【題目】函數在R上為偶函數且在
單調遞減,若
時,不等式
恒成立,則實數m的取值范圍為( )
A. B.
C. D.
【答案】B
【解析】
根據函數的奇偶性和單調性將不等式進行轉化,利用參數分離法,結合函數的最值,利用導數求得相應的最大值和最小值,從而求得m的范圍.
∵函數f(x)為偶函數,
若不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)對x∈[1,3]恒成立,
等價為f(2mx﹣lnx﹣3)≥2f(3)﹣f(2mx﹣lnx﹣3)
即2f(2mx﹣lnx﹣3)≥2f(3)對x∈[1,3]恒成立.
即f(2mx﹣lnx﹣3)≥f(3)對x∈[1,3]恒成立.
∵f(x)在[0,+∞)單調遞減,
∴﹣3≤2mx﹣lnx﹣3≤3對x∈[1,3]恒成立,
即0≤2mx﹣lnx≤6對x∈[1,3]恒成立,
即2m且2m
對x∈[1,3]恒成立.
令g(x),則g′(x)
,在[1,e]上遞增,在[e,3]上遞減,則g(x)的最大值為g(e)
,
h(x),則h′(x)
0,則函數h(x)在[1,3]上遞減,則h(x)的最小值為h(3)
,
則,得
,即
m
,
故選:B.
科目:高中數學 來源: 題型:
【題目】某機構為了解某地區中學生在校月消費情況,隨機抽取了100名中學生進行調查.右圖是根據調查的結果繪制的學生在校月消費金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個金額段的學生人數成等差數列,將月消費金額不低于550元的學生稱為“高消費群” .
(1)求m,n的值,并求這100名學生月消費金額的樣本平均數(同一組中的數據用該組區間的中點值作代表);
(2)根據已知條件完成下面2×2列聯表,并判斷能否有90%的把握認為“高消費群”與性別有關?
高消費群 | 非高消費群 | 合計 | |
男 | |||
女 | 10 | 50 | |
合計 |
(參考公式:,其中
)
P( | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數和中位數;
(3)在月平均用電量為,
,
,
的四組用戶中,用分層抽樣的方法抽取
戶居民,則月平均用電量在
的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】網購是當前民眾購物的新方式,某公司為改進營銷方式,隨機調査了100名市民,統計其周平均網購
的次數,并整理得到如右的頻數直方圖,將周平均網購次數不小于4次的民眾稱為網購迷.這100名市民中,年齡不超過40歲的有65人,且網購迷中有5名市民的年齡超過40歲
(1)根據已知條件完成下面的2×2列聯表,能否在犯錯誤的概率不超過0.10的前提條件下認為網購迷與年齡不超過40歲有關?
(2)現從網購迷中按分層抽樣選5人代表進一步進行調查,若從5人代表中任意挑選2人,求挑選的2人中有年齡超過40歲的概率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,短軸長為
.
(1)求橢圓的方程;
(2)設過點的直線
與橢圓
交于
、
兩點,
是橢圓
的上焦點.問:是否存在直線
,使得
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司共有10條產品生產線,不超過5條生產線正常工作時,每條生產線每天純利潤為1100元,超過5條生產線正確工作時,超過的生產線每條純利潤為800元,原生產線利潤保持不變.未開工的生產線每條每天的保養等各種費用共100元.用x表示每天正常工作的生產線條數,用y表示公司每天的純利潤.
(I)寫出y關于x的函數關系式,并求出純利潤為7700元時工作的生產線條數.
(II)為保證新開的生產線正常工作,需對新開的生產線進行檢測,現從該生產線上隨機抽取100件產品,測量產品數據,用統計方法得到樣本的平均數,標準差
,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估計值.為檢測該生產線生產狀況,現從加工的產品中任意抽取一件,記其數據為X,依據以下不等式評判(P表示對應事件的概率)
①
②
③
評判規則為:若至少滿足以上兩個不等式,則生產狀況為優,無需檢修;否則需檢修生產線.試判斷該生產線是否需要檢修.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一工廠生產了某種產品700件,該工廠需要對這些產品的性能進行檢測現決定利用隨機數表法從中抽取100件產品進行抽樣檢測,將700件產品按001,002,…,700進行編號
(1)如果從第8行第4列的數開始向右讀,請你依次寫出最先檢測的3件產品的編號;(下面摘取了隨機數表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)檢測結果分為優等、合格、不合格三個等級,抽取的100件產品的安全性能和環保性能的檢測結果如下表(橫向和縱向分別表示安全性能和環保性能):
(i)若在該樣本中,產品環保性能是優等的概率為34%,求的值;
(ii)若,求在安全性能不合格的產品中,環保性能為優等的件數比不合格的件數少的概率.
件數 | 環保性能 | |||
優等 | 合格 | 不合格 | ||
安全性能 | 優等 | 6 | 20 | 5 |
合格 | 10 | 18 | 6 | |
不合格 | m | 4 | n |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com