A. | $\frac{1}{8}$(2n-1) | B. | $\frac{1}{24}$(2n+4) | C. | $\frac{1}{24}$(4n-1) | D. | $\frac{1}{16}$(4n-2) |
分析 利用等比數列的通項公式可得公比q,再利用等比數列的通項公式與求和公式即可得出.
解答 解:設等比數列{an}的公比為q,∵a2=$\frac{1}{2}$,a5=4,∴$4=\frac{1}{2}×{q}^{3}$,解得q=2.
∴an=$\frac{1}{2}×{2}^{n-2}$=2n-3,
∴anan+1=2n-3•2n-2=22n-5.
則a1a2+a2a3+…+anan+1=$\frac{1}{8}$+2+…+22n-5=$\frac{\frac{1}{8}({4}^{n}-1)}{4-1}$=$\frac{{4}^{n}-1}{24}$.
故選:C.
點評 本題考查了等比數列的通項公式與求和公式,考查推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | {2,1} | B. | {x=2,y=1} | C. | {(2,1)} | D. | (2,1) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1:1 | B. | 1:2 | C. | 2:1 | D. | 1:3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [0,2] | B. | (-∞,0]∪[2,+∞) | C. | [2,+∞) | D. | [-$\frac{1}{2}$,1) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com