分析 根據二次函數的值域為[0,+∞),可得△=0,解之得b=$\frac{1}{4}$a2.由此將關于x的不等式f(x)<c化簡得x2+ax+$\frac{1}{4}$a2-c<0,再由根與系數的關系解方程|x1-x2|=8,即可得到實數c的值.
解答 解:如果?x0,使f(x0)=0.且?x∈R,都有f(x)≥f(x0)成立.
則函數f(x)的最小值為0,即a2-4b=0,即b=$\frac{1}{4}$a2,
又∵關于x的不等式f(x)<c可化成x2+ax+b-c<0,即x2+ax+$\frac{1}{4}$a2-c<0,
∴不等式f(x)<c的解集為(m,m+8),也就是
方程x2+ax+$\frac{1}{4}$a2-c=0的兩根分別為x1=m,x2=m+8,
∴$\left\{\begin{array}{l}{x}_{1}+{x}_{2}=-a\\{x}_{1}•{x}_{2}=\frac{1}{4}{a}^{2}-c\end{array}\right.$,可得|x1-x2|2=(x1+x2)2-4x1x2=64,
即(-a)2-4($\frac{1}{4}$a2-c)=64,解之即可得到c=16
故答案為:16
點評 本題考查的知識點是二次函數的圖象和性質,熟練掌握二次函數的圖象和性質,是解答的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | f(a)<0,f(b)<0 | B. | f(a)>0,f(b)>0 | C. | f(a)>0,f(b)<0 | D. | f(a)<0,f(b)>0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
ko | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 9x2+16y2=1 | B. | 16x2+9y2=1 | C. | $\frac{x^2}{16}+\frac{y^2}{9}$=1 | D. | $\frac{x^2}{9}+\frac{y^2}{16}$=1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com