【題目】已知橢圓的離心率為
,
、
分別為橢圓
的左、右頂點,點
滿足
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線經(jīng)過點
且與
交于不同的兩點
、
,試問:在
軸上是否存在點
,使得直線
與直線
的斜率的和為定值?若存在,請求出點
的坐標及定值;若不存在,請說明理由.
【答案】(1) (2)
,定值為1.
【解析】試題分析:
(Ⅰ)由可得
,再根據(jù)離心率求得
,由此可得
,故可得橢圓的方程.(Ⅱ)由題意可得直線
的斜率存在,設出直線方程后與橢圓方程聯(lián)立消元后得到一元二次方程,求出直線
與直線
的斜率,結合根與系數(shù)的關系可得
,根據(jù)此式的特點可得當
時,
為定值.
試題解析:
(Ⅰ)依題意得、
,
,
∴,
解得.
∵,
∴,
∴,
故橢圓的方程為
.
(Ⅱ)假設存在滿足條件的點.
當直線與
軸垂直時,它與橢圓只有一個交點,不滿足題意.
因此直線的斜率
存在,設直線
的方程為
,
由消去
整理得
,
設、
,
則,
,
∵
,
∴要使對任意實數(shù),
為定值,則只有
,
此時.
故在軸上存在點
,使得直線
與直線
的斜率的和為定值
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 若f(x1)=f(x2),且x1<x2,關于下列命題:(1)f(x1)>f(﹣x2);(2)f(x2)>f(﹣x1);(3)f(x1)>f(﹣x1);(4)f(x2)>f(﹣x2).正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某百貨商店今年春節(jié)期間舉行促銷活動,規(guī)定消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店經(jīng)理對春節(jié)前天參加抽獎活動的人數(shù)進行統(tǒng)計,
表示第
天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5 | 8 | 8 | 10 | 14 | 15 | 17 |
(Ⅰ)經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)與
具有線性相關關系.請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關于
的線性回歸方程
;
(Ⅱ)該商店規(guī)定:若抽中“一等獎”,可領取元購物券;抽中“二等獎”可領取
元購物券;抽中“謝謝惠顧”,則沒有購物券.已知一次抽獎活動獲得“一等獎”的概率為
,獲得“二等”的概率為
.現(xiàn)有張、王兩位先生參與了本次活動,且他們是否中獎相互獨立,求此二人所獲購物券總金額
的分布列及數(shù)學期望.
參考公式:,
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某工廠的一個車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:)落在各個小組的頻數(shù)分布如下表:
數(shù)據(jù)分組 | |||||||
頻數(shù) | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在的概率;
(2)求這50件產(chǎn)品尺寸的樣本平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)根據(jù)產(chǎn)品的頻數(shù)分布,求出產(chǎn)品尺寸中位數(shù)的估計值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ex-1-x-ax2.
(1)若a=0,求f(x)的單調(diào)區(qū)間;
(2)若當x≥0時,f(x)≥0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓:
,其左右焦點為
、
,過點
的直線交橢圓
于
,
兩點,線段
的中點為
,
的中垂線與
軸和
軸分別交于
、
兩點,且
、
、
構成等差數(shù)列.
(1)求橢圓的方程;
(2)記的面積為
,
(
為原點)的面積為
,試問:是否存在直線
,使得
?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為
,
,
為橢圓
的左、右焦點,
為橢圓
上的任意一點,
的面積的最大值為1,
、
為橢圓
上任意兩個關于
軸對稱的點,直線
與
軸的交點為
,直線
交橢圓
于另一點
.
(1)求橢圓的標準方程;
(2)求證:直線過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com