【題目】如圖,已知橢圓:
,其左右焦點(diǎn)為
、
,過點(diǎn)
的直線交橢圓
于
,
兩點(diǎn),線段
的中點(diǎn)為
,
的中垂線與
軸和
軸分別交于
、
兩點(diǎn),且
、
、
構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記的面積為
,
(
為原點(diǎn))的面積為
,試問:是否存在直線
,使得
?說明理由.
【答案】(1)橢圓的方程為
;(2)方程為
.
【解析】試題分析:(1)第一問比較簡(jiǎn)單直接列一個(gè)方程組,解出a,b,c即可. (2)第二問首先需要設(shè)出直線的方程(
),再利用
和相似得到
,化簡(jiǎn)這個(gè)方程需要點(diǎn)G和點(diǎn)D的坐標(biāo),利用韋達(dá)定理求出點(diǎn)G和點(diǎn)D的坐標(biāo)代入
解關(guān)于k的方程即可.
試題解析:(1)因?yàn)?/span>、
、
構(gòu)成等差數(shù)列,
所以,所以
,
又因?yàn)?/span>,所以
,
所以橢圓的方程為
.
(2)假設(shè)存在直線,使得
,顯然直線
不能與
,
軸垂直.
設(shè)方程為
(
),
將其代入,整理得
,
設(shè),
,所以
,
故點(diǎn)的橫坐標(biāo)為
,所以
,
設(shè),因?yàn)?/span>
,所以
,
解得,即
.
∵和
相似,且
,則
,,
∴,
整理得,因此
,
,
所以存在直線,方程為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理也就是“等積原理”,它是由我國(guó)南北朝杰出的數(shù)學(xué)家祖沖之的兒子祖暅?zhǔn)紫忍岢鰜淼模鏁溤淼膬?nèi)容是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的平面所截,如果截得兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.已知,兩個(gè)平行平面間有三個(gè)幾何體,分別是三棱錐、四棱錐、圓錐(高度都為),其中:三棱錐的底面是正三角形(邊長(zhǎng)為
),四棱錐的底面是有一個(gè)角為
的菱形(邊長(zhǎng)為
),圓錐的體積為
,現(xiàn)用平行于這兩個(gè)平行平面的平面去截三個(gè)幾何體,如果截得的三個(gè)截面的面積相等,那么,下列關(guān)系式正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
過點(diǎn)
,其參數(shù)方程為
(
為參數(shù),
),以
為極點(diǎn),
軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和曲線
的直角坐標(biāo)方程;
(2)求已知曲線和曲線
交于
兩點(diǎn),且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,
、
分別為橢圓
的左、右頂點(diǎn),點(diǎn)
滿足
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線經(jīng)過點(diǎn)
且與
交于不同的兩點(diǎn)
、
,試問:在
軸上是否存在點(diǎn)
,使得直線
與直線
的斜率的和為定值?若存在,請(qǐng)求出點(diǎn)
的坐標(biāo)及定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-x2+a,x∈R的圖象在x=0處的切線方程為y=bx.(e≈2.718 28)
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈R時(shí),求證:f(x)≥-x2+x;
(3)若f(x)>kx對(duì)任意的x∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)
.
(Ⅰ)判斷函數(shù)的單調(diào)性;
(Ⅱ)若時(shí),對(duì)任意
,不等式
恒成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
為菱形,
平面
,
,
,
,
分別是
,
的中點(diǎn).
(1)證明: ;
(2)設(shè)為線段
上的動(dòng)點(diǎn),若線段
長(zhǎng)的最小值為
,求二面角
的余弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)證明線線垂直則需證明線面垂直,根據(jù)題意易得,然后根據(jù)等邊三角形的性質(zhì)可得
,又
,因此
得
平面
,從而得證(2)先找到EH什么時(shí)候最短,顯然當(dāng)線段
長(zhǎng)的最小時(shí),
,在
中,
,
,
,∴
,由
中,
,
,∴
.然后建立空間直角坐標(biāo)系,寫出兩個(gè)面法向量再根據(jù)向量的夾角公式即可得余弦值
解析:(1)證明:∵四邊形為菱形,
,
∴為正三角形.又
為
的中點(diǎn),∴
.
又,因此
.
∵平面
,
平面
,∴
.
而平面
,
平面
且
,
∴平面
.又
平面
,∴
.
(2)如圖, 為
上任意一點(diǎn),連接
,
.
當(dāng)線段長(zhǎng)的最小時(shí),
,由(1)知
,
∴平面
,
平面
,故
.
在中,
,
,
,
∴,
由中,
,
,∴
.
由(1)知,
,
兩兩垂直,以
為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,又
,
分別是
,
的中點(diǎn),
可得,
,
,
,
,
,
,
所以,
.
設(shè)平面的一法向量為
,
則因此
,
取,則
,
因?yàn)?/span>,
,
,所以
平面
,
故為平面
的一法向量.又
,
所以
.
易得二面角為銳角,故所求二面角的余弦值為
.
【題型】解答題
【結(jié)束】
20
【題目】【2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考】已知橢圓:
的左頂點(diǎn)為
,上頂點(diǎn)為
,直線
與直線
垂直,垂足為
點(diǎn),且點(diǎn)
是線段
的中點(diǎn).
(I)求橢圓的方程;
(II)如圖,若直線:
與橢圓
交于
,
兩點(diǎn),點(diǎn)
在橢圓
上,且四邊形
為平行四邊形,求證:四邊形
的面積
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直角梯形中,
,
、
分別是
、
上的點(diǎn),且
,
.沿
將四邊形
翻折至
,連接
、
、
,得到多面體
,且
.
(Ⅰ)求多面體的體積;
(Ⅱ)求證:平面⊥平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的方程是
,將
向上平移2個(gè)單位得到曲線
.
(1)求曲線的極坐標(biāo)方程;
(2)直線的參數(shù)方程為
(
為參數(shù)),判斷直線
與曲線
的位置關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com