日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】如圖,已知橢圓 ,其左右焦點(diǎn)為,過點(diǎn)的直線交橢圓 兩點(diǎn),線段的中點(diǎn)為 的中垂線與軸和軸分別交于兩點(diǎn),且構(gòu)成等差數(shù)列.

(1)求橢圓的方程;

(2)記的面積為 為原點(diǎn))的面積為,試問:是否存在直線,使得?說明理由.

【答案】(1)橢圓的方程為;(2)方程為.

【解析】試題分析:(1)第一問比較簡(jiǎn)單直接列一個(gè)方程組,解出a,b,c即可. (2)第二問首先需要設(shè)出直線的方程),再利用和相似得到,化簡(jiǎn)這個(gè)方程需要點(diǎn)G和點(diǎn)D的坐標(biāo),利用韋達(dá)定理求出點(diǎn)G和點(diǎn)D的坐標(biāo)代入解關(guān)于k的方程即可.

試題解析:(1)因?yàn)?/span>構(gòu)成等差數(shù)列,

所以,所以

又因?yàn)?/span>,所以

所以橢圓的方程為

(2)假設(shè)存在直線,使得,顯然直線不能與 軸垂直.

設(shè)方程為),

將其代入,整理得

設(shè) ,所以

故點(diǎn)的橫坐標(biāo)為,所以

設(shè),因?yàn)?/span>,所以

解得,即

相似,且,則,,

整理得,因此

所以存在直線,方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅原理也就是“等積原理”,它是由我國(guó)南北朝杰出的數(shù)學(xué)家祖沖之的兒子祖暅?zhǔn)紫忍岢鰜淼模鏁溤淼膬?nèi)容是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的平面所截,如果截得兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.已知,兩個(gè)平行平面間有三個(gè)幾何體,分別是三棱錐、四棱錐、圓錐(高度都為),其中:三棱錐的底面是正三角形(邊長(zhǎng)為),四棱錐的底面是有一個(gè)角為的菱形(邊長(zhǎng)為),圓錐的體積為,現(xiàn)用平行于這兩個(gè)平行平面的平面去截三個(gè)幾何體,如果截得的三個(gè)截面的面積相等,那么,下列關(guān)系式正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為為參數(shù),),以為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為分別為橢圓的左、右頂點(diǎn),點(diǎn)滿足

)求橢圓的方程;

)設(shè)直線經(jīng)過點(diǎn)且與交于不同的兩點(diǎn),試問:在軸上是否存在點(diǎn),使得直線 與直線的斜率的和為定值?若存在,請(qǐng)求出點(diǎn)的坐標(biāo)及定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex-x2+a,x∈R的圖象在x=0處的切線方程為y=bx.(e≈2.718 28)

(1)求函數(shù)f(x)的解析式;

(2)當(dāng)x∈R時(shí),求證:f(x)≥-x2+x;

(3)f(x)>kx對(duì)任意的x∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

(Ⅰ)判斷函數(shù)的單調(diào)性;

(Ⅱ)若時(shí),對(duì)任意,不等式恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形, 平面 分別是 的中點(diǎn).

(1)證明:

(2)設(shè)為線段上的動(dòng)點(diǎn),若線段長(zhǎng)的最小值為,求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】試題分析:(1)證明線線垂直則需證明線面垂直,根據(jù)題意易得然后根據(jù)等邊三角形的性質(zhì)可得,因此平面,從而得證(2)先找到EH什么時(shí)候最短,顯然當(dāng)線段長(zhǎng)的最小時(shí), ,在中, ,∴,由中, ,∴.然后建立空間直角坐標(biāo)系,寫出兩個(gè)面法向量再根據(jù)向量的夾角公式即可得余弦值

解析:(1)證明:∵四邊形為菱形,

為正三角形.又的中點(diǎn),∴.

,因此.

平面 平面,∴.

平面 平面

平面.又平面,∴.

(2)如圖, 上任意一點(diǎn),連接 .

當(dāng)線段長(zhǎng)的最小時(shí), ,由(1)知

平面 平面,故.

中,

中, ,∴.

由(1)知 兩兩垂直,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,又 分別是 的中點(diǎn),

可得

所以 .

設(shè)平面的一法向量為

因此

,則

因?yàn)?/span> ,所以平面

為平面的一法向量.又

所以 .

易得二面角為銳角,故所求二面角的余弦值為.

型】解答
結(jié)束】
20

【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,垂足為點(diǎn),且點(diǎn)是線段的中點(diǎn).

I)求橢圓的方程;

II)如圖,若直線 與橢圓交于 兩點(diǎn),點(diǎn)在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直角梯形中,分別是上的點(diǎn),且.沿將四邊形翻折至,連接,得到多面體,且

Ⅰ)求多面體的體積;

Ⅱ)求證:平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程是,將向上平移2個(gè)單位得到曲線. 

(1)求曲線的極坐標(biāo)方程;

(2)直線的參數(shù)方程為為參數(shù)),判斷直線與曲線的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 天天爽天天操 | 午夜精品一区二区三区在线观看 | 一区在线看 | 日韩欧美在线观看视频 | 国产精品成人久久久久 | 日日噜噜噜噜久久久精品毛片 | 国产欧美精品一区二区三区四区 | 欧美成人免费 | 成人性视频免费网站 | 久久久久久久伦理 | 欧美日韩国产高清 | 中文字幕一区日韩精品欧美 | 婷婷色综合色 | 天天摸夜夜操 | 国产小视频在线观看 | 欧美一区二区人人喊爽 | 日韩精品免费在线视频 | 成人在线免费 | 日本精品久久久久久久 | 蜜臀视频在线观看 | 夜夜操操操 | 成人午夜av | 日韩成人不卡 | 亚洲男人天堂 | 国产精品美女www爽爽爽软件 | 青草免费| 国产精品精品视频一区二区三区 | 日韩一区二区三区在线 | 国产精品国产三级国产aⅴ无密码 | 国产一区二区三区精品久久久 | 国产精品久久久久久久久久久久冷 | 成人影院网站ww555久久精品 | www97影院 | 亚洲成人一区二区在线观看 | 欧美激情一区二区三区蜜桃视频 | 精品久久av| 夜夜爽99久久国产综合精品女不卡 | 国产精品久久久久久网站 | 蜜臀99久久精品久久久久久软件 | 久久久资源 | 不卡在线|