【題目】設a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用區間表示);
(2)求函數f(x)=2x3﹣3(1+a)x2+6ax在D內的極值點.
【答案】
(1)解:記h(x)=2x2﹣3(1+a)x+6a(a<1)
△=9(1+a)2﹣48a=(3a﹣1)(3a﹣9),
當△<0,即 ,D=(0,+∞),
當 ,
當a≤0,
(2)解:由f′(x)=6x2﹣6(1+a)x+6a=0得x=1,a,
①當 ,f(x)在D內有一個極大值點a,有一個極小值點;
②當 ,∵h(1)=2﹣3(1+a)+6a=3a﹣1≤0,
h(a)=2a2﹣3(1+a)a+6a=3a﹣a2>0,
∴1D,a∈D,
∴f(x)在D內有一個極大值點a.
③當a≤0,則aD,
又∵h(1)=2﹣3(1+a)+6a=3a﹣1<0.
∴f(x)在D內有無極值點
【解析】(1)根據方程2x2﹣3(1+a)x+6a=0的判別式討論a的范圍,求出相應D即可;(2)由f′(x)=6x2﹣6(1+a)x+6a=0得x=1,a,然后根據(1)中討論的a的取值范圍分別求出函數極值即可.
【考點精析】掌握集合的交集運算和函數的極值與導數是解答本題的根本,需要知道交集的性質:(1)A∩BA,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,則A
B,反之也成立;求函數
的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值.
科目:高中數學 來源: 題型:
【題目】已知橢圓C: 的離心率為
,F是橢圓C的右焦點.過點F且斜率為k(k≠0)的直線l與橢圓C交于A,B兩點,O是坐標原點.
(1)求n的值;
(2)若線段AB的垂直平分線在y軸的截距為 ,求k的值;
(3)是否存在點P(t,0),使得PF為∠APB的平分線?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.
(1)證明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】受轎車在保修期內維修費等因素的影響,企業產生每輛轎車的利潤與該轎車首次出現故障的時間有關,某轎車制造廠生產甲、乙兩種品牌轎車,保修期均為2年,現從該廠已售出的兩種品牌轎車中隨機抽取50輛,統計數據如下:
品牌 | 甲 | 乙 | |||
首次出現故障時間x(年) | 0<x<1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轎車數量(輛) | 2 | 3 | 45 | 5 | 45 |
每輛利潤(萬元) | 1 | 2 | 3 | 1.8 | 2.9 |
將頻率視為概率,解答下列問題:
(Ⅰ)從該廠生產的甲品牌轎車中隨機抽取一輛,求首次出現故障發生在保修期內的概率;
(Ⅱ)若該廠生產的轎車均能售出,記住生產一輛甲品牌轎車的利潤為X1 , 生產一輛乙品牌轎車的利潤為X2 , 分別求X1 , X2的分布列;
(Ⅲ)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產其中一種品牌轎車,若從經濟效益的角度考慮,你認為應該產生哪種品牌的轎車?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,某市為促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的垃圾箱,為調查居民生活垃圾分類投放情況,先隨機抽取了該市三類垃圾箱總計1000噸生活垃圾,數據統計如下(單位:噸);
“廚余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(1)試估計廚余垃圾投放正確的概率;
(2)試估計生活垃圾投放錯誤的概率;
(3)假設廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當數據a,b,c的方差s2最大時,寫出a,b,c的值(結論不要求證明),并求此時s2的值.
(求:S2= [
+
+…+
],其中
為數據x1 , x2 , …,xn的平均數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線x2﹣ =1(b>0)的左、右焦點分別為F1 , F2 , 直線l過F2且與雙曲線交于A,B兩點.
(1)直線l的傾斜角為 ,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)設b= ,若l的斜率存在,且(
+
)
=0,求l的斜率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com