日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】雙曲線x2 =1(b>0)的左、右焦點分別為F1 , F2 , 直線l過F2且與雙曲線交于A,B兩點.
(1)直線l的傾斜角為 ,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)設b= ,若l的斜率存在,且( + =0,求l的斜率.

【答案】
(1)解:雙曲線x2 =1(b>0)的左、右焦點分別為F1,F2,a=1,c2=1+b2

直線l過F2且與雙曲線交于A,B兩點,

直線l的傾斜角為 ,△F1AB是等邊三角形,

可得:A(c,b2),可得:

3b4=4(a2+b2),

即3b4﹣4b2﹣4=0,

b>0,解得b2=2.

所求雙曲線方程為:x2 =1,

其漸近線方程為y=± x


(2)解:b= ,雙曲線x2 =1,可得F1(﹣2,0),F2(2,0).

設A(x1,y1),B(x2,y2),直線的斜率為:k=

直線l的方程為:y=k(x﹣2),

由題意可得: ,消去y可得:(3﹣k2)x2+4k2x﹣4k2﹣3=0,

△=36(1+k2)>0,

可得x1+x2=

則y1+y2=k(x1+x2﹣4)=k( ﹣4)=

=(x1+2,y1),

=(x2+2,y2),

+ =0可得:(x1+x2+4,y1+y2)(x1﹣x2,y1﹣y2)=0,

可得x1+x2+4+(y1+y2)k=0,

+4+ k=0

可得:k2=

解得k=± img src="http://thumb.zyjl.cn/questionBank/Upload/2017/02/11/05/40d23035/SYS201702110503548573774059_DA/SYS201702110503548573774059_DA.016.png" width="22" height="34" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />

l的斜率為:±


【解析】(1)利用直線的傾斜角,求出AB,利用三角形是正三角形,求解b,即可得到雙曲線方程.(2)求出左焦點的坐標,設出直線方程,推出A、B坐標,利用向量的數量積為0,即可求值直線的斜率.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用區間表示);
(2)求函數f(x)=2x3﹣3(1+a)x2+6ax在D內的極值點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工藝品廠要設計一個如圖1所示的工藝品,現有某種型號的長方形材料如圖2所示,其周長為4m,這種材料沿其對角線折疊后就出現圖1的情況.如圖,ABCD(AB>AD)為長方形的材料,沿AC折疊后AB'DC于點P,設ADP的面積為S2 , 折疊后重合部分ACP的面積為S1 .

Ⅰ)設AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;

Ⅱ)求面積S2最大時,應怎樣設計材料的長和寬?

Ⅲ)求面積(S1+2S2)最大時,應怎樣設計材料的長和寬?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設D是函數y=f(x)定義域內的一個區間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個“次不動點”,也稱f(x)在區間D上存在次不動點.若函數f(x)=ax2﹣3x﹣a+ 在區間[1,4]上存在次不動點,則實數a的取值范圍是(
A.(﹣∞,0)
B.(0,
C.[ ,+∞)
D.(﹣∞, ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin2xcos2x+sin22x﹣
(1)求函數f(x)的最小正周期及對稱中心;
(2)在△ABC中,角B為鈍角,角A,B,C的對邊分別為a、b、c,f( )= ,且sinC= sinA,SABC=4,求c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若如圖所示的程序框圖輸出的S是126,則n條件為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x+ |﹣|x﹣ |;
(1)作出函數f(x)的圖象;
(2)根據(1)所得圖象,填寫下面的表格:

性質

定義域

值域

單調性

奇偶性

零點

f(x)


(3)關于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個不同的實數解,求n的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a>0a≠1,設命題p:函數y=loga(x-1)(1,+∞)上單調遞減,命題q:曲線y=x2+(a-2)x+4x軸交于不同的兩點.若pq為真命題,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}滿足a1=1,對任意的n∈N*都有an+1=a1+an+n,則 + +…+ =

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩av一区二区三区在线 | 激情六月综合 | 中文字幕乱码一区二区三区 | 色婷婷狠狠 | 免费日韩| 国产精品嫩草55av | 国产日韩视频在线播放 | 欧美视频三区 | 中文字幕一区二区三区四区五区 | 日韩一区二区在线视频 | 国产中文在线 | 黄色毛片在线看 | 午夜影视 | 最新中文字幕第一页 | 国产剧情一区二区 | 国产成人精品午夜在线播放 | 亚州视频在线 | 欧美成人一区二区三区片免费 | 国产精品久久久久久久久 | 国产欧美精品一区二区 | 国产成人不卡 | 在线观看中文视频 | 亚洲综合国产 | 国产精品成人免费 | 成人激情视频在线观看 | 日韩一区在线观看视频 | xnxx 日本19 | 99久久精品久久亚洲精品 | 色综合久久88色综合天天6 | 91精品综合久久久久久五月天 | 美女黄色毛片视频 | 国产成人午夜片在线观看高清观看 | 亚洲jizzjizz日本少妇 | 精品久久久久久久久久久久 | 亚洲精品成人av | 亚洲精品视频一区二区三区 | 欧美精品99 | 欧美一区二区精品 | 日韩在线中文字幕 | 久久伊人av | 亚洲国产精品综合久久久 |