【題目】某校為了解開展校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如圖所示:
等級 | 不合格 | 合格 | ||
得分 | [20,40) | [40,60) | [60,80) | [80,100] |
頻數(shù) | 6 | a | 24 | b |
(1)求a,b,c的值;
(2)先用分層抽樣的方法從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談,再從這10人中任選4人,記所選4人的量化總分為ξ,求ξ的分布列及數(shù)學期望E(ξ);
(3)某評估機構以指標(
,其中
表示
的方差)來評估該校開展安全教育活動的成效.若
≥0.7,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在(2)的條件下,判斷該校是否應調整安全教育方案.
【答案】(1) .
(2)分布列見解析,.
(3) 認定教育活動是有效的;在(2)的條件下,判斷該校不用調整安全教育方案.
【解析】試題分析:(I)利用頻率分布直方圖的性質即可得出;(II)從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談,其中“不合格”的學生數(shù)=10=4,則“合格”的學生數(shù)=6.由題意可得ξ=0,5,10,15,20.利用“超幾何分布列”的計算公式即可得出概率,進而得出分布列與數(shù)學期望;(III)利用Dξ計算公式即可得出,可得M=
即可得出結論.
解析:
(1)由頻率分布直方圖,可知成績在[20,40)內的頻率為0.005×20=0.1,
故抽取的學生答卷數(shù)為=60,
由頻率分布直方圖可知,得分在[80,100]內的頻率為0.01×20=0.2,
所以b=60×0.2=12.
又6+a+24+12=60,
所以a=18,所以c==0.015.
(2)“不合格”與“合格”的人數(shù)之比為24∶36=2∶3,
因此抽取的10人中“不合格”的學生有4人,“合格”的學生有6人,
所以ξ的所有可能取值為20,15,10,5,0.
所以P(ξ=20)==
,P(ξ=15)=
=
,
P(ξ=10)==
,P(ξ=5)=
=
,
P(ξ=0)==
.
所以ξ的分布列為:
ξ | 20 | 15 | 10 | 5 | 0 |
P |
E(ξ)=20×+15×
+10×
+5×
+0×
=12.
(3)由(2)可得
D(ξ)=(20-12)2×+(15-12)2×
+(10-12)2×
+(5-12)2×
+(0-12)2×
=16,
所以M==
=0.75>0.7,
故我們認為該校的安全教育活動是有效的,不需要調整安全教育方案.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)若為偶函數(shù),求
的值并寫出
的增區(qū)間;
(Ⅱ)若關于的不等式
的解集為
,當
時,求
的最小值;
(Ⅲ)對任意的,
,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,
)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三人進行羽毛球練習賽,其中兩人比賽,另一人當裁判,每局比賽結束時,負的一方在下一局當裁判,設各局中雙方獲勝的概率均為 ,各局比賽的結果都相互獨立,第1局甲當裁判.
(1)求第4局甲當裁判的概率;
(2)X表示前4局中乙當裁判的次數(shù),求X的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)f(x)=sinx的圖象向右平移 個單位后得到函數(shù)y=g(x)的圖象,則函數(shù)y=f(x)+g(x)的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)已知一次函數(shù)f(x)滿足:f(1)=2, f(2x)=2f(x)-1.
(1) 求f(x)的解析式;
(2) 設, 若|g(x)|-af(x)+a≥0,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,
都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求上述函數(shù)有零點的概率;
(2)若,
都是從區(qū)間
上任取的一個數(shù),求
成立的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com