分析 利用直線和圓的位置關(guān)系,求出兩個(gè)極端位置|AB|的值,即可得到結(jié)論.
解答 解:圓心C(1,1),半徑R=1,要使AB長度最小,則∠ACB最小,即∠PCB最小,
即PC最小即可,由點(diǎn)到直線的距離公式可得d=$\frac{|3+4+3|}{5}$=2
則∠PCB=60°,∠ACB=120°,即|AB|=$\sqrt{3}$,
當(dāng)點(diǎn)P在3x+4y+3=0無限遠(yuǎn)取值時(shí),∠ACB→180°,
此時(shí)|AB|→直徑2,
故$\sqrt{3}$≤|AB|<2,
故答案為:[$\sqrt{3}$,2).
點(diǎn)評 本題主要考查直線和圓相切的性質(zhì)的應(yīng)用,考查點(diǎn)到直線的距離公式.綜合性較強(qiáng),有一定的難度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1} | B. | {5,-1} | C. | {5} | D. | {-5,5,-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在$(0,\frac{π}{4})$上單調(diào)遞減 | B. | f(x)在$(\frac{π}{8},\frac{3π}{8})$上單調(diào)遞減 | ||
C. | f(x)在$(0,\frac{π}{4})$上單調(diào)遞增 | D. | f(x)在$(\frac{π}{8},\frac{3π}{8})$上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com