P為橢圓+
=1上任意一點,F1、F2為左、右焦點,如圖所示.
(1)若PF1的中點為M,求證:|MO|=5-|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點P,使·
=0,若存在,求出P點的坐標, 若不存在,試說明理由
科目:高中數學 來源: 題型:解答題
(本小題滿分15分)已知橢圓經過點
,其離心率為
.
(1) 求橢圓的方程;
(2)設直線與橢圓
相交于
兩點,以線段
為鄰邊作平行四邊形
,其中頂點
在橢圓
上,
為坐標原點.求
到直線
的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓E: (a,b>0)過M(2,
) ,N(
,1)兩點,O為坐標原點,
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點B恰好是拋物線的焦點,
離心率等于.直線
與橢圓C交于
兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 橢圓C的右焦點是否可以為
的垂心?若可以,求出直線
的方程;
若不可以,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的方程為
,點
分別為其左、右頂點,點
分別為其左、右焦點,以點
為圓心,
為半徑作圓
;以點
為圓心,
為半徑作圓
;若直線
被圓
和圓
截得的弦長之比為
;
(1)求橢圓的離心率;
(2)己知,問是否存在點
,使得過
點有無數條直線被圓
和圓
截得的弦長之比為
;若存在,請求出所有的
點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分) 雙曲線的兩條漸近線的方程為y=±x,且經過點(3,-2).(1)求雙曲線的方程;(2)過雙曲線的右焦點F且傾斜角為60°的直線交雙曲線于A、B兩點,求|AB|.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com