【題目】如圖,已知橢圓:
的左、右焦點分別為
、
,過點
、
分別作兩條平行直線
、
交橢圓
于點
、
、
、
.
(1)求證:;
(2)求四邊形面積的最大值.
【答案】(1)證明見解析;(2)的最大值為6.
【解析】
試題分析:(1)圓錐曲線中證明兩線段相等,一般要用解析法,計算這兩條線段的長度得相等結論,直線斜率不可能為0,因此可設設
,
,
:
.所
代入橢圓方程得出
的一元二次方程,從而得
,由圓錐曲線上的弦長公式得
,同理
方程為
,并設
,
,最后計算出
,它們相等;(2)原點
實質上是平行四邊形
對角線的交點,而
,從而可得
,設
,因此只要求得
的最小值,即可得結論,此最小值可用函數的單調性得出(可先用基本不等式求解,發現基本不等式中等號不能取到).
試題解析:(1)設,
,
:
.
聯立得
.
∴,
.
設,
,由
,得
:
.
聯立得
.
∴,
.
∴,
.
∴.
而,
,
∴.
(2)由(1)知四邊形為平行四邊形,
,且
.
∴
.
設(
),
,
∴在
上單調遞增,
∴.
故的最大值為6,此時
.
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①垂直于同一平面的兩條直線相互平行;
②平行于同一平面的兩條直線相互平行;
③若一條直線平行于一個平面內的無數條直線,那么這條直線平行于這個平面;
④若一條直線垂直于一個平面內的任一條直線,那么這條直線垂直于這個平面.
其中真命題的個數是( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:函數f(x)=loga(2+x)-loga(2-x)(a>0且a≠1)
(Ⅰ)求f(x)定義域;
(Ⅱ)判斷f(x)的奇偶性,并說明理由;
(Ⅲ)求使f(x)>0的x的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將參加夏令營的500名學生編號為:001,002,…,500,采用系統抽樣的方法抽取一個容量為50的樣本,且隨機抽得的號碼為003,這500名學生分住在三個營區,從001到200在第一營區,從201到355在第二營區,從356到500在第三營區,三個營區被抽中的人數分別為( )
A.20,15,15 B.20,16,14 C.12,14,16 D.21,15,14
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設m,n表示兩條不同的直線,α,β表示兩個不同的平面,則下列命題不正確的是 ( )
A. m⊥α,m⊥β,則α∥β B. m∥n,m⊥α,則n⊥α
C. m⊥α,n⊥α,則m∥n D. m∥α,α∩β=n,則m∥n
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在下列命題中,真命題是( )
A. “x=2時,x2-3x+2=0”的否命題; B. “若b=3,則b2=9”的逆命題;
C. 若ac>bc,則a>b; D. “相似三角形的對應角相等”的逆否命題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com