【題目】如圖所示,在四棱錐中,四邊形
為矩形,
為等腰三角形,
,平面
平面
,且
,
,
分別為
的中點.
(1)證明: 平面
;
(2)證明:平面平面
;
(3)求四棱錐的體積.
【答案】(1)見解析;(2) 見解析;(3).
【解析】試題分析:(1)EF∥平面PAD,根據直線與平面平行的判定定理可知只需證EF與平面PAD內一直線平行,連AC,根據中位線可知EF∥PA,EF平面PAD,PA平面PAD,滿足定理所需條件;
(2平面PAD⊥平面ABCD,根據面面垂直的判定定理可知在平面ABCD內一直線與平面PAD垂直,根據面面垂直的性質定理可知CD⊥平面PAD,又CD平面ABCD,滿足定理所需條件;
(3)過P作PO⊥AD于O,從而PO⊥平面ABCD,即為四棱錐的高,最后根據棱錐的體積公式求出所求即可.
解:(1)如圖所示,
連接. ∵四邊形
為矩形,且
為
的中點,
∴也是
的中點. 又
是
的中點,
,
∵平面
,
平面
.
平面
(2) 證明:∵平面平面
,
,平面
平面
,
∴平面
. ∵
平面
,∴平面
平面
.
(3)取的中點
,連接
. ∵平面
平面
,
為等腰三角形,
∴平面
,即
為四棱錐
的高. ∵
,∴
. 又
,
∴四棱錐的體積
.
科目:高中數學 來源: 題型:
【題目】某工廠為了對新研發的一種產品進行合理定價,隨機抽取了個試銷售數據,得到第
個銷售單價
(單位:元)與銷售
(單位:件)的數據資料,算得
(1)求回歸直線方程;
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤-銷售收入-成本)
附:回歸直線方程中,
,其中
是樣本平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果一個幾何體的主視圖與左視圖是全等的長方形,邊長分別是,如圖所示,俯視圖是一個邊長為
的正方形.
(1)求該幾何體的表面積;
(2)求該幾何體的外接球的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二階矩陣M有特征值λ=8及對應的一個特征向量 =[
],并且矩陣M對應的變換將點(﹣1,2)變換成(﹣2,4).
(1)求矩陣M;
(2)求矩陣M的另一個特征值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過拋物線的焦點
,斜率為
的直線交拋物線于
兩點,且
.
(1)求該拋物線的方程;
(2)已知拋物線上一點,過點
作拋物線的兩條弦
和
,且
,判斷直線
是否過定點?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點為圓
的圓心,
是圓上動點,點
在圓的半徑
上,且有點
和
上的點
,滿足
(1)當在圓上運動時,求點
的軌跡方程;
(2)若斜率為的直線
與圓
相切,與(1)中所求點
的軌跡教育不同的兩點
是坐標原點,且
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的多面體中, 平面
,
平面
,
,且
,
是
的中點.
(Ⅰ)求證: .
(Ⅱ)求平面與平面
所成的銳二面角的余弦值.
(Ⅲ)在棱上是否存在一點
,使得直線
與平面
所成的角是
.若存在,指出點
的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com