日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
12.已知函數f(x)=ex-ax有極值1,這里e是自然對數的底數.
(1)求實數a的值,并確定1是極大值還是極小值;
(2)若當x∈[0,+∞)時,f(x)≥mxln(x+1)+1恒成立,求實數m的取值范圍.

分析 (1)f′(x)=ex-a,根據函數f(x)=ex-ax有極值1,可得存在x0,使得f′(x0)=${e}^{{x}_{0}}$-a=0,f(x0)=${e}^{{x}_{0}}$-ax0=1,解得x0,a.即可判斷出結論.
(2)當x∈[0,+∞)時,f(x)≥mxln(x+1)+1恒成立?ex-x-1-mxln(x+1)≥0恒成立.令g(x)=ex-(x+1),x≥0.g(0)=0.利用導數研究其單調性可得:ex≥x+1.
①若mxln(x+1)+x+1≤x+1,則ex-x-1-mxln(x+1)≥0恒成立.可得:m≤0.
②m>0時,x≥0時,mxln(x+1)+x+1≤ex.令F(x)=mxln(x+1)+x+1-ex,(x≥0),F(0)=0.
由F(x)≤0,可得mxln(x+1)≤ex-x-1,x>0時,化為:m≤$\frac{{e}^{x}-x-1}{xln(x+1)}$.下面證明:$\frac{1}{2}$≤$\frac{{e}^{x}-x-1}{xln(x+1)}$.利用導數研究其單調性即可得出.

解答 解:(1)f′(x)=ex-a,∵函數f(x)=ex-ax有極值1,
∴存在x0,使得f′(x0)=${e}^{{x}_{0}}$-a=0,f(x0)=${e}^{{x}_{0}}$-ax0=1,
解得x0=0,a=1.
∴f′(x)=ex-1,可知:0是極小值點,因此1是極小值.
(2)當x∈[0,+∞)時,f(x)≥mxln(x+1)+1恒成立?ex-x-1-mxln(x+1)≥0恒成立.
令g(x)=ex-(x+1),x≥0.g(0)=0.
則g′(x)=ex-1≥0,
∴x≥0時,函數g(x)單調遞增,因此g(x)≥g(0)=0,因此ex≥x+1.
①若mxln(x+1)+x+1≤x+1,則ex-x-1-mxln(x+1)≥0恒成立.
則mxln(x+1)≤0,可得:m≤0.
∴m≤0時,x≥0時,f(x)≥mxln(x+1)+1恒成立.
②m>0時,x≥0時,mxln(x+1)+x+1≤ex
令F(x)=mxln(x+1)+x+1-ex,(x≥0),F(0)=0.
由F(x)≤0,可得mxln(x+1)≤ex-x-1,
x=0時,化為0≤0,恒成立,m∈R.
x>0時,化為:m≤$\frac{{e}^{x}-x-1}{xln(x+1)}$.
下面證明:$\frac{1}{2}$≤$\frac{{e}^{x}-x-1}{xln(x+1)}$.
令h(x)=2ex-2x-2-xln(x+1),h(0)=0.
h′(x)=2ex-2-ln(x+1)-$\frac{x}{x+1}$.h′(0)=0.
h(x)=2ex-$\frac{1}{x+1}$-$\frac{1}{(x+1)^{2}}$≥h(0)=0,
∴h′(x)≥0.
∴函數h(x)在[0,+∞)上單調遞增,∴h(x)≥h(0)=0.
因此:$\frac{1}{2}$≤$\frac{{e}^{x}-x-1}{xln(x+1)}$成立,并且$\frac{1}{2}$是其最小值.
∴m≤$\frac{1}{2}$.
綜上可得:實數m的取值范圍是$(-∞,\frac{1}{2}]$.

點評 本題考查了利用導數研究函數的單調性極值與最值、分類討論方法、方程與不等式的解法、等價轉化方法,考查了推理能力與計算能力,屬于難題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

2.若關于x的不等式|2x-1|-|x-1|≤log2a有解,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的上、下焦點分別為F1,F2,上焦點F1到直線 4x+3y+12=0的距離為3,橢圓C的離心率e=$\frac{1}{2}$.
(Ⅰ)求橢圓C的標準方程
(Ⅱ)設過橢圓C的上頂點A的直線l與橢圓交于點B(B不在y軸上),垂直于l的直線與l交于點M,與x軸交于點H,若$\overrightarrow{{F_1}B}•\overrightarrow{{F_1}H}$=0,且|${\overrightarrow{MO}}$|=|${\overrightarrow{MA}}$|,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知函數f(x)=-lnx+x2-x+m(m∈R).
(Ⅰ)求函數y=f(x)的零點的個數;
(Ⅱ)當m=0時,令函數g(x)=f(x)+$\frac{a-2}{2}{x^2}$+x,a∈R,求函數y=g(x)在x∈[1,e]上的值域,其中e=2.71828…為自然對數的底數.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.有兩對夫婦各帶一個小孩到動物園游玩,購票后排成一隊依次入園.為安全起見,首尾一定要排兩位爸爸,另外兩個小孩要排在一起,則這六人的入園順序排法種數為24.(用數字作答)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.在平面直角坐標系xOy中,以坐標原點為圓心且與直線mx-y-2m+1=0(m∈R)相切的所有圓中,半徑最大的圓的標準方程為(  )
A.x2+y2=5B.x2+y2=3C.x2+y2=9D.x2+y2=7

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.如圖,在三棱柱ABC-A1B1C1中,側棱AA1⊥底面ABC,D為棱BC的中點,AB=AC,BC=$\sqrt{2}A{A_1}$,求證:
(1)A1C∥平面ADB1
(2)BC1⊥平面ADB1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦點分別為F1、F2.左、右頂點分別為A、B,虛軸的上、下端點分別為C、D.若線段BC與雙曲線的漸近線的交點為E,且∠BF1E=∠CF1E,則雙曲線的離心率為(  )
A.1+$\sqrt{6}$B.1+$\sqrt{5}$C.1+$\sqrt{3}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.將一張邊長為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是(  )
A.$\frac{32}{3}$$\sqrt{6}$cm3B.$\frac{64}{3}$$\sqrt{6}$cm3C.$\frac{32}{3}$$\sqrt{2}$cm3D.$\frac{64}{3}$$\sqrt{2}$cm3

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩在线小视频 | 99视频+国产日韩欧美 | 国产视频一二区 | 中文字幕欧美在线 | 日韩欧美综合 | 一区免费视频 | 日韩免费一区二区 | 成人在线不卡 | 亚洲自拍偷拍一区 | 丰满少妇高潮在线观看 | 国产成人精品一区 | 91精品国产综合久久久久久 | 日韩av资源 | 日韩毛片视频 | 天堂a在线| 亚洲精品在线观看视频 | 日韩免费看 | 五月婷婷色综合 | 成人在线一区二区 | 久久久不卡 | 亚洲精品成人 | 欧美日韩免费 | 久久久不卡 | 亚洲一区二区免费 | 久久免费看片 | 免费黄色一级视频 | 欧美一区二区视频在线观看 | 天天色天天爱 | 天天躁日日躁狠狠很躁 | 一级国产片 | 中文字幕不卡视频 | 日本精品网站 | 一级片免费视频 | 精品国产91乱码一区二区三区 | 国产精品999 | 国产日韩精品一区二区 | 男女瑟瑟视频 | 亚洲福利专区 | 国产在线第一页 | 色噜噜狠狠一区二区三区果冻 | 亚洲一区二区三区中文字幕 |