日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
18.在梯形ABCD中,AD∥BC,∠ABC=90°,AB=a,AD=3a,且∠ADC=arcsin$\frac{{\sqrt{5}}}{5}$,PA⊥平面ABCD,PA=a,則二面角P-CD-A的大小為arctan$\frac{\sqrt{5}}{3}$.

分析 如圖過點A作AE⊥CD于E,連接PE,由∠PEA是二面角P-CD-A的平面角或補角,由Rt△DAE中,AD=3a,∠ADC=arcsin$\frac{{\sqrt{5}}}{5}$,則AE=AD•sin∠ADE=$\frac{3\sqrt{5}}{5}$a,即可求得二面角P-CD-A的大。

解答 解:如圖過點A作AE⊥CD于E,連接PE,
由PA⊥平面ABCD,則PE⊥CD,
故∠PEA是二面角P-CD-A的平面角或補角,
在Rt△DAE中,AD=3a,∠ADC=arcsin$\frac{{\sqrt{5}}}{5}$,
AE=AD•sin∠ADE=$\frac{3\sqrt{5}}{5}$a,
在Rt△PAE中,tan∠PEA=$\frac{PA}{AE}$=$\frac{\sqrt{5}}{3}$,
∴二面角P-CD-A的大小arctan$\frac{\sqrt{5}}{3}$,
故答案為:arctan$\frac{\sqrt{5}}{3}$.

點評 本題主要考查了平面與平面之間的位置關系,考查二面角的求法,考查空間想象能力、運算能力和推理論證能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

19.平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(6,3)$,$\overrightarrow c=m\overrightarrow a+\overrightarrow b$(m∈R),且$\overrightarrow c$與$\overrightarrow a$的夾角等于$\overrightarrow c$與$\overrightarrow b$的夾角,則m=3.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.直線x+y=$\sqrt{3}$a與圓x2+y2=a2+(a-1)2相交于點A、B,點O是坐標原點,若△AOB是正三角形,則實數a=(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.以橢圓$C:\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的中心O為圓心,以$\sqrt{\frac{ab}{2}}$為半徑的圓稱為該橢圓的“伴隨”.已知橢圓的離心率為$\frac{{\sqrt{3}}}{2}$,拋物線x2=8y的準線過此橢圓的一個頂點.
(Ⅰ) 求橢圓C及其“伴隨”的方程;
(Ⅱ)斜率為1的直線m經過拋物線x2=8y的焦點F,且與拋物線交于M,N兩點,求線段MN的長度;
(Ⅲ) 過點P(0,m)作“伴隨”的切線l交橢圓C于A,B兩點,若$\overrightarrow{OA}•\overrightarrow{OB}=\frac{2}{5}$,求切線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.如圖,在正方體ABCD-A1B1C1D1中,E、F分別為棱AD,AB的中點.
(1)求證:EF∥平面CB1D1
(2)求CB1與平面CAA1C1所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知函數f(x)=2sin2(x+$\frac{π}{4}$)-2$\sqrt{2}$cos(x-$\frac{π}{4}$)-5a+2.
(1)設t=sinx+cosx,將函數f(x)表示為關于t的函數g(t),求g(t)的解析式;
(2)對任意x∈[0,$\frac{π}{2}$],不等式f(x)≥6-2a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.已知直線l:y=ax+2在矩陣M=$[\begin{array}{l}{0}&{1}\\{1}&{-2}\end{array}]$對應的變換作用下得到直線l′,若直線l′過點(1,1),則實數a的值為-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.9粒種子分種在3個坑內,每坑3粒,每粒種子發芽的概率為0.5,若一個坑內至少有1粒種子發芽,則這個坑不需要補種,若一個坑內的種子都沒發芽,則這個坑需要補種.假定每個坑至多補種一次,每補種1個坑需10元,用ξ表示補種費用,則ξ的數學期望值等于3.75.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.已知點A(1,1),B(-2,2),則向量$\overrightarrow{OA}$與$\overrightarrow{BO}$的夾角為( 。 (其中O為坐標原點)
A.30°B.90°C.60°D.120°

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 大黑人交xxx极品hd | 久久狠狠 | 国产午夜精品一区二区三区嫩草 | www.夜夜操.com | 日本精品一区二区三区视频 | 蜜桃av中文字幕 | 不卡日韩在线 | 成人精品在线视频 | 色婷婷影院 | 九九热精品视频 | 亚洲人在线 | 国产不卡一 | 一区二区精品 | 午夜免费一区二区播放 | 五月激情站| 国产精品国产自产拍高清 | 一区二区三区在线免费观看 | 国产成人精品一区二区三区网站观看 | 一区二区三区高清 | 国产精品成人一区二区三区 | 国产精品久久久久影院色老大 | 精品国产123| 国产一区二区精品久久 | 久久久www成人免费精品 | 日韩一区二区三区av | 欧美视频在线免费 | 日韩激情欧美 | 成人一区二区三区四区 | 色一情| 成人激情视频在线观看 | 电影91久久久 | 日本高清视频在线观看 | 久久精品欧美一区二区三区不卡 | 国产视频三区 | 久久精品国产视频 | 久久久久久99精品 | 波多野结衣电影一区 | 欧美日韩在线精品 | 日韩av一区二区在线 | 大香萑 | 日本天堂一区二区 |