分析 由已知的兩個向量坐標得到它們的模長相等,位置關系垂直,從而判斷三角形APB的形狀得到所求.
解答 解:由已知向量$\overrightarrow{AP}=({1,\sqrt{3}}),\overrightarrow{PB}=({-\sqrt{3},1})$,得到向量$\overrightarrow{AP}$•$\overrightarrow{PB}$=0,且模長相等為2,所以三角形APB為等腰直角三角形,所以$\overrightarrow{AP}$與$\overrightarrow{AB}$的夾角為$\frac{π}{4}$;
故答案為:$\frac{π}{4}$.
點評 本題考查了平面向量數量積公式的運用;屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | $-\frac{1}{2}$ | C. | 2 | D. | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com