【題目】已知F1,F2為橢圓E:的左、右焦點(diǎn),且|F1F2|=2
,點(diǎn)
在E上.
(1)求E的方程;
(2)直線l與以E的短軸為直徑的圓相切,l與E交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),試判斷O與以AB為直徑的圓的位置關(guān)系,并說明理由.
【答案】(1);(2)O在以AB為直徑的圓外,理由見解析
【解析】
(1)根據(jù),點(diǎn)
在
上,結(jié)合
,即可得到;
(2)分斜率不存在和斜率存在兩種情況進(jìn)行討論.斜率不存在時(shí),直接通過與半徑比較即可;斜率存在時(shí),設(shè)直線方程,聯(lián)立方程組,利用韋達(dá)定理表示出
,和
,借助向量的坐標(biāo)運(yùn)算,求出
為銳角,進(jìn)而判斷出
與以
為直徑的圓的位置關(guān)系.
(1),點(diǎn)
在
上,
可得,即
,
,解得
,
則橢圓的方程為;
(2)當(dāng)直線的斜率不存在時(shí),設(shè)直線方程為
和
,
若,可得與橢圓的交點(diǎn)為
,
以為直徑的圓心為
,半徑為
,
,即
在圓外;
同理可得時(shí),也有
在圓外;
當(dāng)直線的斜率存在時(shí),設(shè)直線
的方程為
,
則到
的距離為
,即
,
聯(lián)立橢圓方程和直線l的方程可得,
,
設(shè),
,即有
,
,
,
即,則
為銳角,故
在以
為直徑的圓外.
綜上可得,在以
為直徑的圓外.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn)
,
,過點(diǎn)
的直線
與橢圓
交于不同的兩點(diǎn)
.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)設(shè)直線和直線
的斜率分別為
和
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,ABCD為平行四邊形,平面PAB,
,
.M為PB的中點(diǎn).
(1)求證:PD//平面AMC;
(2)求銳二面角B-AC-M的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
為直角梯形,
,
,
為
的中點(diǎn),
,平面
平面
.
(1)求證:平面平面
;
(2)記點(diǎn)到平面
的距離為
,點(diǎn)
到平面
的距離為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體是正三棱柱(底面是正三角形的直棱柱)
沿平面
切除一部分所得,其中平面
為原正三棱柱的底面,
,點(diǎn)D為
的中點(diǎn).
(1)求證:平面
;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若關(guān)于的不等式
對(duì)任意的
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且過點(diǎn)
.
(1)求的方程;
(2)是否存在直線與
相交于
兩點(diǎn),且滿足:①
與
(
為坐標(biāo)原點(diǎn))的斜率之和為2;②直線
與圓
相切,若存在,求出
的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取名工人,將他們隨機(jī)分成兩組,每組
人.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:
)繪制了如圖所示的莖葉圖(莖為十位數(shù),葉為個(gè)位數(shù)):
(1)根據(jù)莖葉圖,估計(jì)兩種生產(chǎn)方式完成任務(wù)所需時(shí)間至少分鐘的概率,并對(duì)比兩種生產(chǎn)方式所求概率,判斷哪種生產(chǎn)方式的效率更高?
(2)將完成生產(chǎn)任務(wù)所需時(shí)間超過和不超過
的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從編號(hào)為1,2,3,4,…,10的10個(gè)大小、形狀相同的小球中,任取5個(gè)球.如果某兩個(gè)球的編號(hào)相鄰,則稱這兩個(gè)球?yàn)橐唤M“好球”.
(1)求任取的5個(gè)球中至少有一組“好球”的概率;
(2)在任取的5個(gè)球中,記“好球”的組數(shù)為X,求隨機(jī)變量X的概率分布列和均值E(X).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com