【題目】已知橢圓中心在坐標原點,焦點在坐標軸上,且經過
三點.
(1)求橢圓的方程;
(2)在直線上任取一點
,連接
,分別與橢圓
交于
兩點,判斷直線
是否過定點?若是,求出該定點.若不是,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣(2m+1)x+2m(m∈R).
(1)當m=1時,解關于x的不等式xf(x)≤0;
(2)解關于x的不等式f(x)>0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某少數民族的刺繡有著悠久的歷史,如圖(1),(2),(3),(4)為最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數越多刺繡越漂亮.現按同樣的規律刺繡(小正方形的擺放規律相同),設第n個圖形包含f(n)個小正方形.
(1)求出f(5)的值.
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關系式,并根據你得到的關系式求出f(n)的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】省環保研究所對某市市中心每天環境放射性污染情況進行調查研究后,發現一天中環境綜合放射性污染指數與時刻
(時)的關系為
,其中
是與氣象有關的參數,且
,若用每天
的最大值為當天的綜合放射性污染指數,并記作
.
(1)令.求
的取值范圍;
(2)求;
(3)省政府規定,每天的綜合放射性污染指數不得超過2,試問目前該市市中心的綜合放射性污染指數是否超標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經銷商經銷某種農產品,在一個銷售季度內,每售出該產品獲利潤500元,未售出的產品,每
虧損300元.根據歷史資料,得到銷售季度內市場需求量的頻率分布直方圖,如圖所示.經銷商為下一個銷售季度購進了
該農產品.以
(單位:
)表示下一個銷售季度內的市場需求量,
(單位:元)表示下一個銷售季度內經銷該農產品的利潤.
(1)將表示為
的函數;
(2)根據直方圖估計利潤不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區間中點值代表該組的各個值,并以需求量落入該區間的頻率作為需求量取該區間中點值的概率(例如:若需求量,則取
,且
的概率等于需求量落入
的頻率),求
的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱的各條棱長均相等,
為
的中點,
分別是線段
和線段
上的動點(含端點),且滿足
.當
運動時,下列結論中不正確的是( )
A. 平面平面
B. 三棱錐
的體積為定值
C. 可能為直角三角形 D. 平面
與平面
所成的銳二面角范圍為
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com