如圖,在四棱錐P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四邊形ABCD滿足BC∥AD,AB⊥AD,AB=BC=1.點E,F分別為側棱PB,PC上的點,且=λ.
(1)求證:EF∥平面PAD.
(2)當λ=時,求異面直線BF與CD所成角的余弦值;
(3)是否存在實數λ,使得平面AFD⊥平面PCD?若存在,試求出λ的值;若不存在,請說明理由.
科目:高中數學 來源: 題型:解答題
如圖,是邊長為
的正方形,
平面
,
,
,
與平面
所成角為
.
(1)求證:平面
;
(2)求二面角的余弦值;
(3)設點是線段
上一個動點,試確定點
的位置,使得
平面
,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,四邊形為直角梯形,
,
,
為等邊三角形,且平面
平面
,
,
為
中點.
(1)求證:;
(2)求平面與平面
所成的銳二面角的余弦值;
(3)在內是否存在一點
,使
平面
,如果存在,求
的長;如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是邊長為2的等邊三角形,AE=1,CD與平面ABDE所成角的正弦值為.
(Ⅰ)若F是線段CD的中點,證明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分l2分)(注意:在試題卷上作答無效)
如圖,四棱錐中,
∥
,
,側面
為等邊三角形.
.
(I) 證明:
(II) 求AB與平面SBC所成角的大小。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com