日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
6.已知條件p:k=$\sqrt{3}$;條件q:直線y=kx+2與圓x2+y2=1相切,則¬p是¬q的(  )
A.充分必要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

分析 根據題意,先求出直線y=kx+2與圓x2+y2=1相切時k的值,進而分析可得條件p是條件q的充分不必要條件,結合充要條件的性質可得¬p是¬q的必要不充分條件,即可得答案.

解答 解:根據題意,若直線y=kx+2與圓x2+y2=1相切,
則有$\frac{|2|}{\sqrt{1+{k}^{2}}}$=1,
解可得k=±$\sqrt{3}$,
若有k=$\sqrt{3}$,則有直線y=kx+2與圓x2+y2=1相切,而直線y=kx+2與圓x2+y2=1相切,不一定有k=$\sqrt{3}$,
故條件p:k=$\sqrt{3}$是條件q:直線y=kx+2與圓x2+y2=1相切成立的充分不必要條件,
則¬p是¬q的必要不充分條件,
故選:B.

點評 本題考查充分、必要條件的判定,關鍵是依據直線與圓的位置關系求出k的值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

1.已知中心在原點,焦點在y軸上的雙曲線的離心率為$\sqrt{5}$,則它的漸近線方程為y=±$\frac{1}{2}$x.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.點P(-1,2)到直線3x-4y+12=0的距離為(  )
A.5B.$\frac{1}{5}$C.1D.2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.如圖,三棱錐P-ABC中,BC⊥平面PAB,PA=PB=AB=6,BC=9,點M,N分別為PB,BC的中點.
(1)求證:AM⊥平面PBC;
(2)E是線段AC上的點,且AM∥平面PNE.
①確定點E的位置;②求直線PE與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知函數f(x)=x2+4[sin(θ+$\frac{π}{3}$)]x-2,θ∈[0,2π).
(1)若函數f(x)為偶函數,求tanθ的值;
(2)若f(x)在[-$\sqrt{3}$,1]上是單調函數,求θ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.命題“對任意的x∈R,x2-2x+1≥0”的否定是(  )
A.不存在x0∈R,${x_0}^2-2{x_0}+1≥0$B.存在x0∈R,${x_0}^2-2{x_0}+1≤0$
C.存在x0∈R,${x_0}^2-2{x_0}+1<0$D.對任意的x∈R,x2-2x+1<0

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知命題,若m>$\frac{1}{4}$,則mx2-x+1=0無實根,寫出該命題的逆命題、否命題、逆否命題,并判斷它們的真假.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知函數f(x)=xlnx+x2-ax+2(a∈R)有兩個不同的零點x1,x2
(1)求實數a的取值范圍;
(2)求證:x1•x2>1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知函數$f(x)=a-\frac{2}{{{2^x}+1}}(a∈R)$是奇函數.
(1)求a的值;
(2)判斷函數f(x)的單調性,(不需證明)
(3)若對任意的t∈R,不等式f(t2+2)+f(t2-tk)>0恒成立,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久国产精品一区二区 | 久久久久一区二区 | 久草小视频 | 午夜在线观看视频网站 | 欧美亚洲一区二区三区 | 美国特色黄a大片 | 国产精品xxx在线观看 | 婷婷免费视频 | 男男成人高潮片免费网站 | www.青青草 | av日韩在线播放 | 男女操网站 | 久久嫩草 | 色婷婷在线视频 | 日韩在线高清 | 五月激情综合 | 欧美国产视频 | 中文字幕欧美激情 | 黄色一级片网站 | 一级特黄毛片 | 亚洲精品福利视频 | 亚洲精品免费看 | 久久久久久一区 | 日本免费在线观看视频 | 丁香婷婷网| 国产精品成人一区二区三区 | 久久亚洲精品视频 | 国产视频黄 | 亚洲国产成人精品女人 | 91av免费| 黄色网av | 中文字幕免费高清 | 久久久久亚洲精品 | 天天综合影院 | 精品一区二区三区中文字幕 | 色老板免费视频 | 精品少妇一区二区三区免费观 | 欧美性猛交xxxx乱大交退制版 | 91在线免费视频观看 | av综合网站| 国产精品日韩在线 |