分析 (1)利用對數的運算性質,求得所給式子的值.
(2)由條件利用同角三角函數的基本關系,以及三角函數在各個象限中的符號,求得sinα和cosα的值.
解答 解:(1)log2.56.25+lg0.01+ln$\sqrt{e}$-2${\;}^{1+lo{g}_{2}3}$=2-2+$\frac{1}{2}$-2×3=-$\frac{11}{2}$.
(2)∵tanα=-3=$\frac{sinα}{cosα}$,sin2α+cos2α=1,又α是第二象限的角,∴sinα>0,cosα<0,
求得sinα=$\frac{3\sqrt{10}}{10}$,cosα=-$\frac{\sqrt{10}}{10}$.
點評 本題主要考查對數的運算性質,同角三角函數的基本關系,以及三角函數在各個象限中的符號,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
x | 0 | 1 | 2 | 3 | 4 |
y | 2.2 | 4.3 | 4.5 | 4.8 | 6.7 |
A. | 8.1 | B. | 8.2 | C. | 8.3 | D. | 8.4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $({0,\frac{2}{e^3}})$ | B. | $({\frac{3}{e^3},\frac{2}{e^2}})$ | C. | $({\frac{2}{e^3},\frac{1}{e^2}})$ | D. | $[{\frac{2}{e^3},\frac{1}{e^2}}]$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com