日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
2.若數列{an}的前n項和Sn=n2(n∈N*),則$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{10}{a}_{11}}$=( 。
A.$\frac{8}{17}$B.$\frac{9}{19}$C.$\frac{10}{21}$D.$\frac{11}{23}$

分析 利用數列的前n項和Sn=n2(n∈N*),求出數列的通項,求出$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),利用“裂項法”即可求得$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{10}{a}_{11}}$.

解答 解:當n=1時,a1=s1=1,
當n≥2時,an=Sn-Sn-1=n2-(n-1)2=2n-1,
當n=1時,an=2n-1,成立
∴an=2n-1,
∴$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{10}{a}_{11}}$,
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{19}$-$\frac{1}{21}$),
=$\frac{1}{2}$(1-$\frac{1}{21}$),
=$\frac{10}{21}$,
故選C.

點評 本題考查等差數列的通項公式,“裂項法”求數列的前n項和,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

4.已知P為雙曲線$\frac{x^2}{9}$-$\frac{y^2}{16}$=1右支上的動點,M為圓(x+5)2+y2=1上動點,N為圓(x-5)2+y2=4上的動點,則|PM|-|PN|的最小值、最大值分別為( 。
A.4、8B.3、9C.2、10D.1、11

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知函數f(x)=$\frac{{2}^{x}+m}{{2}^{x}-1}$為奇函數.
(1)求實數m的值;
(2)用定義證明函數f(x)在區間(0,+∞)上為單調減函數;
(3)若關于x的不等式f(x)+a<0對區間[1,3]上的任意實數x都成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知函數f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$,函數g(x)=f(x)-2x恰有三個不同的零點,則z=2a的取值范圍是( 。
A.[${\frac{1}{2}$,2)B.[1,4]C.[${\frac{1}{4}$,4)D.[${\frac{1}{2}$,4)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知數列{an}中,a1=1,a1+2a2+3a3+…+nan=$\frac{n+1}{2}{{a}_{n+1}}$(n∈N*
(Ⅰ)證明當n≥2時,數列{nan}是等比數列,并求數列{an}的通項an;
(Ⅱ)求數列{n2an}的前n項和Tn
(Ⅲ)對任意n∈N*,使得$\frac{n}{{{3}^{n-1}}}{{a}_{n+1}}$≤(n+6)λ 恒成立,求實數λ的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.在等差數列{an}中,a3=k,a9=12.
(1)當k=6時,求數列{an}的前n項和為Sn
(2)若bn=n2+6an且對于任意n∈N*,恒有bn+1>bn成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知集合A={x|3≤x<6},B={x|2<x<9}.
(1)分別求:∁R(A∩B),(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C⊆A,求實數a的取值集合.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.如圖,ABCDEF為多面體,平面ABED與平面ACFD垂直,點O在線段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.
(Ⅰ)證明直線BC∥EF;
(Ⅱ)求棱錐F-OBED的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知f(x)=x5+x3,x∈[-2,2],且f(m)+f(m-1)>0,則實數m的范圍是( 。
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,2]C.[-1,$\frac{1}{2}$)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产成人精品高清久久 | 国产精品一二三 | 国产欧美一区二区精品性色 | 成人激情免费视频 | 日本三级在线观看网站 | 国产艳妇av视国产精选av一区 | 欧美成人影院在线 | 爱爱视频天天操 | 日韩久久一区 | 四虎成人精品 | 一区在线看 | www.日韩视频 | 九九久久精品 | 国产成人精品在线 | 黄色免费网 | 丁香久久 | 在线观看欧美日韩视频 | 国产成人涩涩涩视频在线观看 | 91久久精品国产91久久 | 亚洲日韩欧美一区二区在线 | 午夜精品久久久久久久男人的天堂 | 综合久久综合久久 | 黄色一级片在线看 | 久久国产精品亚洲 | 国产精品123| 日韩av一区在线观看 | 欧美久久影视 | 黄色影片网址 | 久久久精品欧美 | 91亚洲国产精品 | 黄色免费看| 日韩中文字幕第一页 | 青草视频在线观看免费 | 午夜成人在线视频 | 成人免费视频播放 | 日韩精品在线一区 | 深夜福利1000 | 国产精品888 | 亚洲 中文 欧美 日韩 在线观看 | 国产精品久久久久久久久久免费 | 一区二区免费在线观看 |