日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=數學公式在點x=2處連續,則常數a的值是


  1. A.
    -3
  2. B.
    3
  3. C.
    -2
  4. D.
    2
A
分析:由題意,函數在點x=2處連續即,在x=2兩側的函數值的極限相等,由此關系可判斷出關于a的方程,求a
解答:∵函數f(x)=在點x=2處連續,函數值為2-log22=1,
∴可得出=x-1,
即得x2+ax+2=(x-1)(x-2)=x2-3x+2,
解得a=-3
故選A
點評:本題考查函數的連續性,求解本題關鍵在于理解連續性的定義,從圖象上看是不間斷,從定義上看是在此點兩邊函數的極限值相等,本題求解有一難點,即x<2時的解析沒有意義,對它的處理是解題成功與否的關鍵,此類題在有連續性的保證下,分母一定可以約去,即分子中可以分解出一個因子,它恰好是分母,注意理解這一規律.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)定義在[-1,1]上,設g(x)=f(x-c)和h(x)=f(x-c2)兩個函數的定義域分別為A和B,若A∩B=∅,則實數c的取值集合為
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)定義在(-1,1)上,對于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
),且當x<0時,f(x)>0;
(1)驗證函數f(x)=ln
1-x
1+x
是否滿足這些條件;
(2)判斷這樣的函數是否具有奇偶性和其單調性,并加以證明;
(3)若f(-
1
2
)=1,試解方程f(x)=-
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax在(O,2)內的值域是(a2,1),則函數y=f(x)的圖象是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)定義在區間(-1,1)上,f(
1
2
)=-1
,對任意x,y∈(-1,1),恒有f(x)+f(y)=f(
x+y
1+xy
)
成立,又數列{an}滿足a1=
1
2
an+1=
2a
1+
a
2
n

(I)在(-1,1)內求一個實數t,使得f(t)=2f(
1
2
)

(II)求證:數列{f(an)}是等比數列,并求f(an)的表達式;
(III)設cn=
n
2
bn+2,bn=
1
f(a1)
+
1
f(a2)
+
1
f(a3)
+…+
1
f(an)
,是否存在m∈N*,使得對任意n∈N*cn
6
7
lo
g
2
2
m-
18
7
log2m
恒成立?若存在,求出m的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

凸函數的性質定理為:如果函數f(x)在區間D上是凸函數,則對D內的任意x1,x2,…,xn都有
f(x1)+f(x2)+…+f(xn)
n
≤f(
x1+x2+…+xn
n
)
.已知函數f(x)=sinx在(0,π)上是凸函數,則
(1)求△ABC中,sinA+sinB+sinC的最大值.
(2)判斷f(x)=2x在R上是否為凸函數.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 91在线视频免费观看 | 国产精品日韩精品 | 国产无毛| 久久精品1区2区 | 久久99国产精品久久99大师 | 99热在线观看 | 老司机福利在线观看 | 久久小视频 | japan高清日本乱xxxxx | 国产在线精品一区 | 精品视频 免费 | 成人日韩在线 | 欧美男男videos | 在线成人www免费观看视频 | 日本在线视频一区二区三区 | 一区二区三区日本 | 91.成人天堂一区 | 91在线视频播放 | 亚洲无线视频 | 国产精品久久久久久久久久妞妞 | 亚洲免费在线观看 | 在线成人免费视频 | 日韩欧美在线视频免费观看 | 亚洲国产精品久久久久 | 日韩专区中文字幕 | 欧美久久一区 | 亚洲精品午夜aaa久久久 | 久久免费高清视频 | 国产最新精品视频 | 国产高清一区 | 国产成人精品网 | 羞羞视频网站在线看 | 中文字幕日韩欧美 | 国产网站在线 | 露娜同人18av黄漫网站 | 国产在线精品成人免费怡红院 | 国产一区二区三区 | 91在线国产观看 | 麻豆专区一区二区三区四区五区 | 国产不卡一区 | 操操网站|