日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)定義在區間(-1,1)上,f(
1
2
)=-1
,對任意x,y∈(-1,1),恒有f(x)+f(y)=f(
x+y
1+xy
)
成立,又數列{an}滿足a1=
1
2
an+1=
2a
1+
a
2
n

(I)在(-1,1)內求一個實數t,使得f(t)=2f(
1
2
)

(II)求證:數列{f(an)}是等比數列,并求f(an)的表達式;
(III)設cn=
n
2
bn+2,bn=
1
f(a1)
+
1
f(a2)
+
1
f(a3)
+…+
1
f(an)
,是否存在m∈N*,使得對任意n∈N*cn
6
7
lo
g
2
2
m-
18
7
log2m
恒成立?若存在,求出m的最小值;若不存在,請說明理由.
分析:(I)由f(t)=2f(
1
2
)=f(
1
2
)+f(
1
2
)=f(
1
2
+
1
2
1+
1
2
×
1
2
)=f(
4
5
)
,能求出實數t.
(II)由f(a1)=f(
1
2
)=-1
,且f(x)+f(y)=f(
x+y
1+xy
)
,知
f(an+1)
f(an)
=2
,由此能夠證明數列{f(an)}是等比數列,并能求出f(an)的表達式.
(III)由bn=-(1+
1
2
+
1
22
+…+
1
2n-1
)=-
1-
1
2n
1-
1
2
=-2+
1
2n-1
,知cn=
n
2
bn+2=-n+
n
2n
+2
,則cn+1-cn=-(n+1)+
n+1
2n+1
+2-[-n+
n
2n
+2]
<0,故{cn}是減數列,由此能夠推導出存在m∈N*,使得對任意n∈N*cn
6
7
lo
g
2
2
m-
18
7
log2m
恒成立.
解答:解:(I)f(t)=2f(
1
2
)=f(
1
2
)+f(
1
2
)=f(
1
2
+
1
2
1+
1
2
×
1
2
)=f(
4
5
)

t=
4
5
…(2分)
(II)∵f(a1)=f(
1
2
)=-1

f(x)+f(y)=f(
x+y
1+xy
)

f(an+1)=f(
2an
1+
a
2
n
)=f(an)+f(an)=2f(an)


f(an+1)
f(an)
=2

∴{f(an)}是以-1為首項,2為公比的等比數列,
f(an)=-2n-1.…(6分)
(III)由(II)得,bn=-(1+
1
2
+
1
22
+…+
1
2n-1
)=-
1-
1
2n
1-
1
2
=-2+
1
2n-1
…(8分)
cn=
n
2
bn+2=-n+
n
2n
+2
,…(9分)
cn+1-cn=-(n+1)+
n+1
2n+1
+2-[-n+
n
2n
+2]

=
n+1
2n+1
-
n
2n
-1

=
1-n
2n+1
-1
<0,
∴{cn}是減數列,
cnc1=-1+
1
2
+2=
3
2

要使7cn<6log2 2m-18log2m對任意n∈N*恒成立,
只需6log22m-18log2m>
21
2

4log 22m-12log2m-7>0
log2m<-
1
2
,或log2m>
7
2

∴0<m<
2
2
,或m>8
2
≈11.31

∴當m≥12,且m∈N*時,7cn<6log2 2m-18log2m對任意n∈N*恒成立,
∴m的最小正整數值為12.
點評:本題考查數列與函數的綜合運用,考查運算求解能力,推理論證能力;考查化歸與轉化思想.對數學思維的要求比較高,有一定的探索性.綜合性強,難度大,是高考的重點.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)定義在(-1,1)上,對于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且當x<0時,f(x)>0.
(Ⅰ)驗證函數f(x)=ln
1-x
1+x
是否滿足這些條件;
(Ⅱ)判斷這樣的函數是否具有奇偶性和其單調性,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)定義在R上,并且對于任意實數x,y都有f(x+y)=f(x)+f(y)成立,且x≠y時,f(x)≠f(y),x>0時,有f(x)>0.
(1)判斷f(x)的奇偶性;
(2)若f(1)=1,解關于x的不等式f(x)-f(
1x-1
)≥2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•連云港二模)已知函數f(x)定義在正整數集上,且對于任意的正整數x,都有f(x+2)=2f(x+1)-f(x),且f(1)=2,f(3)=6,則f(2009)=
4018
4018

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)定義在區間(-1,1)上,f(
1
2
)=-1,且當x,y∈(-1,1)時,恒有f(x)-f(y)=f(
x-y
1-xy
),又數列{an}滿足:a1=
1
2
,an+1=
2an
1+
a
2
n

(I)證明:f(x)在(-1,1)上為奇函數;
(II)求f(an)關于n的函數解析式;
(III)令g(n)=f(an)且數列{an}滿足bn=
1
g(n)
,若對于任意n∈N+,都有b1+b2+…+bnt2-3t恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)定義在R上,對任意的x∈R,f(x+1001)=
2
f(x)
+1
,已知f(11)=1,則f(2013)=
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: aaa级片| 国产精品久久久久9999赢消 | 日韩精品一二 | 亚洲视频在线一区 | 99久久久久久 | 99久久精品一区二区 | 久久久国产精品入口麻豆 | 午夜精品久久久久久久久 | 精产国产伦理一二三区 | 精品一区二区三区四区五区 | 狠狠久久婷婷 | 亚洲视频免费在线 | 巨大荫蒂视频欧美大片 | 久草在线电影网 | 国产精品视频免费看 | 亚洲成人福利 | 国产传媒在线视频 | 国产精品久久久久久久久 | 国产99久久| 国产综合精品一区二区三区 | 激情999 | 羞羞网站在线观看 | 亚洲一区av在线 | 日本一区二区在线视频 | 国产精品一区二区三区免费观看 | 久久精品欧美 | 最新免费av网站 | 国产一区二区三区久久久久久久久 | 亚洲成人av一区二区 | 国产精品91色 | 欧美日韩一区二区视频在线观看 | 久久久久久黄 | www在线视频 | 国产一区二区三区久久 | 午夜免费福利在线 | 欧美日韩不卡在线 | 久久国产精品99久久久久久老狼 | 噜噜噜噜狠狠狠7777视频 | 成人午夜免费视频 | 色爽女人免费 | xxxx爽日本hd18乱禁 |