【題目】在中,角
、
、
所對的邊分別為
、
、
.已知
.
(1)求;
(2)若,求
.
【答案】(1);(2)2.
【解析】
試題分析:(1)首先利用正弦定理化已知條件等式中的邊為角,然后利用兩角和的正弦公式結合三角形內角和定理求得的值,從而求得角
的大小;(2)首先結合(1)利用余弦定理求得
的關系式,然后根據三角形面積公式求得
的值.
試題解析:(1)由正弦定理得:
2sinBcosB=sinAcosAcosB-sinBsin2A-sinCcosA=sinAcos(A+B)-sinCcosA
=-sinAcosC-sinCcosA=-sin(A+C)=-sinB,
∵sinB≠0,
∴cosB=-,B=. …6分
(2)由b2=a2+c2-2accosB,b=a,cosB=-得
c2+ac-6a2=0,解得c=2a, …10分
由S△ABC=acsinB=a2=2,得a=2. …12分
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數f(x)的解析式;
(2)在區間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種儀器隨著使用年限的增加,每年的維護費相應增加. 現對一批該儀器進行調查,得到這批儀器自購入使用之日起,前5年平均每臺儀器每年的維護費用大致如下表:
年份 | 1 | 2 | 3 | 4 | 5 |
維護費 | 0.7 | 1.2 | 1.6 | 2.1 | 2.4 |
(1)根據表中所給數據,試建立關于
的線性回歸方程
;
(2)若該儀器的價格是每臺12萬元,你認為應該使用滿五年換一次儀器,還是應該使用滿八年換一次儀器?并說明理由.
參考公式:用最小二乘法求線性回歸方程的系數公式:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,在底面ABCD中,AD//BC,AD⊥CD,Q是AD的中點,M是棱PC的中點,PA=PD=2,BC=AD=1,CD=
,PB=
.
(Ⅰ)求證:平面PAD⊥底面ABCD;
(Ⅱ)試求三棱錐B-PQM的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據統計,2017年國慶中秋假日期間,黔東南州共接待游客590.23萬人次,實現旅游收入48.67億元,同比分別增長44.57%、55.22%.旅游公司規定:若公司導游接待旅客,旅游年總收入不低于40(單位:百萬元),則稱為優秀導游.經驗表明,如果公司的優秀導游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導游100名,統計他們一年內旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數分布表如下:
分組 | |||||
頻數 | 18 | 49 | 24 | 5 |
(Ⅰ)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?
(Ⅱ)若導游的獎金(單位:萬元),與其一年內旅游總收入
(單位:百萬元)之間的關系為
,求甲公司導游的年平均獎金;
(Ⅲ)從甲、乙兩家公司旅游收入在的總人數中,用分層抽樣的方法隨機抽取6人進行表彰,其中有兩名導游代表旅游行業去參加座談,求參加座談的導游中有乙公司導游的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某社區為了解居民參加體育鍛煉的情況,從該社區隨機抽取了18名男性居民和12名女性居民,對他們參加體育鍛煉的情況進行問卷調查.現按是否參加體育鍛煉將居民分成兩類:甲類(不參加體育鍛煉)、乙類(參加體育鍛煉),結果如下表:
甲類 | 乙類 | |
男性居民 | 3 | 15 |
女性居民 | 6 | 6 |
(Ⅰ)根據上表中的統計數據,完成下面的列聯表;
男性居民 | 女性居民 | 總計 | |
不參加體育鍛煉 | |||
參加體育鍛煉 | |||
總計 |
(Ⅱ)通過計算判斷是否有90%的把握認為參加體育鍛煉與否與性別有關?
附:,其中
.
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018湖南(長郡中學、株洲市第二中學)、江西(九江一中)等十四校高三第一次聯考】已知函數(其中
且
為常數,
為自然對數的底數,
).
(Ⅰ)若函數的極值點只有一個,求實數
的取值范圍;
(Ⅱ)當時,若
(其中
)恒成立,求
的最小值
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租車時間不超過兩小時免費,超過兩小時的部分每小時收費標準為2元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立來該租車點租車騎游(各租一車一次),設甲、乙不超過兩小時還車的概率分別為;兩小時以上且不超過三小時還車的概率分別為
;兩人租車時間都不會超過四小時.
(1)求出甲、乙兩人所付租車費用相同的概率;
(2)求甲、乙兩人所付的租車費用之和為4元時的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com