分析 根據條件,可作$\overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow$,并以OA,OB為鄰邊作平行四邊形OACB,從而$\overrightarrow{OC}=\overrightarrow{a}+\overrightarrow$,這樣便可得到平行四邊形OACB為菱形,∠AOB=120°,從而可求得AB=$2\sqrt{3}$,而$\overrightarrow•(\overrightarrow{a}-\overrightarrow)=\overrightarrow{OB}•\overrightarrow{BA}$,且$|\overrightarrow{OB}|=2,|\overrightarrow{BA}|=2\sqrt{3}$,$<\overrightarrow{OB},\overrightarrow{BA}>=150°$,從而可求出$\overrightarrow{OB}•\overrightarrow{BA}$的值,即得出$\overrightarrow•(\overrightarrow{a}-\overrightarrow)$的值.
解答 解:∵$|\overrightarrow{a}|=|\overrightarrow|=|\overrightarrow{a}+\overrightarrow|=2$;
∴作$\overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow$,以OA,OB為鄰邊作平行四邊形OACB,則$\overrightarrow{OC}=\overrightarrow{a}+\overrightarrow$,如圖所示:
則,△OAC,△OBC都是等邊三角形;
∴∠AOB=120°,且OA=OB=2;
∴$AB=2\sqrt{3}$;
∴$\overrightarrow•(\overrightarrow{a}-\overrightarrow)=\overrightarrow{OB}•(\overrightarrow{OA}-\overrightarrow{OB})$
=$\overrightarrow{OB}•\overrightarrow{BA}$
=$|\overrightarrow{OB}||\overrightarrow{BA}|cos150°$
=$2×2\sqrt{3}×(-\frac{\sqrt{3}}{2})$
=-6.
故答案為:-6.
點評 考查向量加法的平行四邊形法則,向量的幾何意義,三角函數的定義,向量減法的幾何意義,以及數量積的計算公式.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 二次函數:y=2t2 | B. | 冪函數:y=t3 | ||
C. | 指數函數:y=2t | D. | 對數函數:y=log2t |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,+∞) | B. | [2,+∞) | C. | (0,2] | D. | [2,4] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com