A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 由m>2n,得到m-2n>0,由m+$\frac{4{n}^{2}-2mn+9}{m-2n}$=m-2n+$\frac{9}{m-2n}$,利用基本不等式即可求出.
解答 解:∵m>2n,
∴m-2m>0,
∴m+$\frac{4{n}^{2}-2mn+9}{m-2n}$=m-2n+($\frac{4{n}^{2}-2mn+9}{m-2n}$+2n)=m-2n+$\frac{9}{m-2n}$≥2$\sqrt{(m-2n)•\frac{9}{m-2n}}$=6,
當且僅當m-2n=3時取等號,
∴則m+$\frac{4{n}^{2}-2mn+9}{m-2n}$的最小值為6
故選:C
點評 本題考查基本不等式的運用,考查學生的計算能力,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $({0\;\;,\;\;\frac{1}{2}})$ | B. | $({0\;\;,\;\;\frac{1}{4}})$ | C. | $({\frac{1}{2}\;\;,\;\;0})$ | D. | $({\frac{1}{4}\;\;,\;\;0})$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com