已知是拋物線
上的兩個點,點
的坐標為
,直線
的斜率為k,
為坐標原點.
(Ⅰ)若拋物線的焦點在直線
的下方,求k的取值范圍;
(Ⅱ)設C為W上一點,且,過
兩點分別作W的切線,記兩切線的交點為
,求
的最小值.
(Ⅰ);(Ⅱ)
.
解析試題分析:(Ⅰ)直線過點
,且斜率為k,所以直線方程可設為
,若焦點
在直線
的下方,則滿足不等式
,代入求
的范圍;(Ⅱ)設直線
的方程為
,
,分別與拋物線
聯立,因為直線和拋物線的一個交點坐標
已知,故可利用韋達定理求出切點
的坐標,再求出切線
和
的方程,進而聯立求交點
的坐標,再求
的最小值即可.
試題解析:(Ⅰ)解:拋物線的焦點為
. 由題意,得直線
的方程為
,
令 ,得
,即直線
與y軸相交于點
. 因為拋物線
的焦點在直線
的下方,
所以 ,解得
.
(Ⅱ)解:由題意,設,
,
,
聯立方程 消去
,得
, 由韋達定理,得
,所以
.
同理,得的方程為
,
. 對函數
求導,得
,
所以拋物線在點
處的切線斜率為
,所以切線
的方程為
, 即
. 同理,拋物線
在點
處的切線
的方程為
.聯立兩條切線的方程
解得
,
,所以點
的坐標為
. 因此點
在定直線
上.因為點
到直線
的距離
,所以
,當且僅當點
時等號成立. 由
,得
,驗證知符合題意.所以當
時,
有最小值
.
考點:1、直線的方程;2、直線和拋物線的位置關系;3、導數的幾何意義.
科目:高中數學 來源: 題型:解答題
已知為橢圓
上的三個點,
為坐標原點.
(1)若所在的直線方程為
,求
的長;
(2)設為線段
上一點,且
,當
中點恰為點
時,判斷
的面積是否為常數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點分別是橢圓
的左、右焦點, 點
在橢圓上
上.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設直線若
、
均與橢圓
相切,試探究在
軸上是否存在定點
,點
到
的距離之積恒為1?若存在,請求出點
坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓的右頂點為A(2,0),點P(2e,
)在橢圓上(e為橢圓的離心率).
(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足,且
,求實數λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:,定點M(0,5),直線
與
軸交于點F,O為原點,若以OM為直徑的圓恰好過
與拋物線C的交點.
(1)求拋物線C的方程;
(2)過點M作直線交拋物線C于A,B兩點,連AF,BF延長交拋物線分別于,求證: 拋物線C分別過
兩點的切線的交點Q在一條定直線上運動.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點在拋物線
:
上.
(1)若的三個頂點都在拋物線
上,記三邊
,
,
所在直線的斜率分別為
,
,
,求
的值;
(2)若四邊形的四個頂點都在拋物線
上,記四邊
,
,
,
所在直線的斜率分別為
,
,
,
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左、右焦點分別為
、
,
為原點.
(1)如圖1,點為橢圓
上的一點,
是
的中點,且
,求點
到
軸的距離;
(2)如圖2,直線與橢圓
相交于
、
兩點,若在橢圓
上存在點
,使四邊形
為平行四邊形,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的離心率為
,過橢圓
右焦點
的直線
與橢圓
交于點
(點
在第一象限).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知為橢圓
的左頂點,平行于
的直線
與橢圓相交于
兩點.判斷直線
是否關于直線
對稱,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com