A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | 1 |
分析 由題意求出切點坐標,由求導公式求出函數的代數,由導數的幾何意義求出切線的斜率,代入點斜式方程求出切線的方程,分別令x=0、y=0求出切線的截距,即可求出切線與坐標軸圍成的三角形面積.
解答 解:由題意知,曲線$y=\sqrt{x}$,
當x=1時y=1,則切點坐標是(1,1),
又$y′=(\sqrt{x})′=({x}^{\frac{1}{2}})′$=$\frac{1}{2}{x}^{-\frac{1}{2}}$=$\frac{1}{2\sqrt{x}}$,
則在x=1處的切線的斜率k=$\frac{1}{2}$,
所有在x=1處的切線方程是y-1=$\frac{1}{2}$(x-1),
即y=$\frac{1}{2}x+\frac{1}{2}$,
令x=0,則y=$\frac{1}{2}$;令y=0,則x=-1,
所以切線與坐標軸圍成的三角形面積:
S=$\frac{1}{2}×1×\frac{1}{2}$=$\frac{1}{4}$,
故選A.
點評 本題考查求導公式,導數的幾何意義,以及切線的直線方程的求法,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{6}$ | D. | $\frac{{\sqrt{3}}}{12}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com