【題目】已知x>0,由不等式x+ ≥2
=2,x+
=
≥3
=3,…,可以推出結論:x+
≥n+1(n∈N*),則a=( )
A.2n
B.3n
C.n2
D.nn
科目:高中數學 來源: 題型:
【題目】某商場銷售某種品牌的空調器,每周周初購進一定數量的空調器,商場每銷售一臺空調器可獲利500元,若供大于求,則每臺多余的空調器需交保管費100元;若供不應求,則可從其他商店調劑供應,此時每臺空調器僅獲利潤200元. (Ⅰ)若該商場周初購進20臺空調器,求當周的利潤(單位:元)關于當周需求量n(單位:臺,n∈N)的函數解析式f(n);
(Ⅱ)該商場記錄了去年夏天(共10周)空調器需求量n(單位:臺),整理得表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
頻數 | 1 | 2 | 3 | 3 | 1 |
以10周記錄的各需求量的頻率作為各需求量發生的概率,若商場周初購進20臺空調器,X表示當周的利潤(單位:元),求X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】兩條平行直線和圓的位置關系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓“相交”;若兩平行直線和圓沒有公共點,則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓“相切”.已知直線,
,和圓:
相切,則實數
的取值范圍是( )
A. 或
B.
或
C. 或
D.
或
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:
,直線
:
.
(1)若直線被圓
截得的弦長為
,求實數
的值;
(2)當時,由直線
上的動點
引圓
的兩條切線,若切點分別為
,
,則在直線
上是否存在一個定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學為調查來自南方和北方的同齡大學生的身高差異,從2016級的年齡在18~19歲之間的大學生中隨機抽取了來自南方和北方的大學生各10名,測量他們的身高,量出的身高如下(單位:cm):
南方:158,170,166,169,180,175,171,176,162,163.
北方:183,173,169,163,179,171,157,175,184,166.
(1)根據抽測結果,畫出莖葉圖,對來自南方和北方的大學生的身高作比較,寫出統計結論.
(2)設抽測的10名南方大學生的平均身高為cm,將10名南方大學生的身高依次輸入如圖所示的程序框圖進行運算,問輸出的s大小為多少?并說明s的統計學意義。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
的參數方程為
(
為參數),以
為極點,
軸的非負半軸為極軸建立極坐標系.
(1)求曲線的普通方程;
(2)極坐標方程為的直線
與
交
,
兩點,求線段
的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com