【題目】△ABC中,角A,B,C的對邊分別為a,b,c,且三角形的面積S= accosB.
(1)求角B的大小;
(2)若a=2 ,點D在AB的延長線上,且AD=3,cos∠ADC=
,求b的值.
【答案】
(1)解:∵S= accosB=
acsinB,
∴tanB= ,
∴B= .
(2)解:如圖,
∵B= .∴∠CBD=
,
∵cos∠ADC= ,∴sin∠ADC=
=
,
∴在△BCD中,由正弦定理 ,可得:
,解得:CD=9,
∴在△ADC中,由余弦定理可得:b2=AD2+CD2﹣2ADCDcos∠ADC=9+81﹣2× =54.
∴b=3 .
【解析】(1)由已知利用三角形面積公式,同角三角函數基本關系式可求tanB= ,由特殊角的三角函數值即可得解B的值.(2)由已知可求∠CBD=
,sin∠ADC=
,由正弦定理解得CD,進而在△ADC中,由余弦定理可得b的值.
【考點精析】根據題目的已知條件,利用正弦定理的定義的相關知識可以得到問題的答案,需要掌握正弦定理:.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xoy中,過橢圓 右焦點的直線
交橢圓C于M,N兩點,P為M,N的中點,且直線OP的斜率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設另一直線l與橢圓C交于A,B兩點,原點O到直線l的距離為 ,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓C1: =1(a>b>0)的離心率為
,x軸被曲線C2:y=x2﹣b截得的線段長等于C1的長半軸長.
(Ⅰ)求C1 , C2的方程;
(Ⅱ)設C2與y軸的交點為M,過坐標原點O的直線l與C2相交于點A、B,直線MA,MB分別與C1相交于D,E.
(i)證明:MD⊥ME;
(ii)記△MAB,△MDE的面積分別是S1 , S2 . 問:是否存在直線l,使得 =
?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在海岸處發現北偏東
方向,距
處
海里的
處有一艘走私船.在
處北偏西
方向,距
處
海里的
處的我方緝私船奉命以
海里
小時的速度追截走私船,此時走私船正以
海里
小時的速度從
處向北偏東
方向逃竄.問:緝私船沿什么方向行駛才能最快截獲走私船?并求出所需時間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以O為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C:ρsin2θ=2acosθ(a>0),l: (t為參數)
(1)求曲線C的普通方程,l的直角坐標方程
(2)設l與C交于M,N兩點,點P(﹣2,0),若|PM|,|MN|,|PN|成等比數列,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】楊輝三角,是二項式系數在三角形中的一種幾何排列。在歐洲,這個表叫做帕斯卡三角形。帕斯卡(1623——1662)是在1654年發現這一規律的,比楊輝要遲年,比賈憲遲
年。如圖的表在我國南宋數學家楊輝1261年所著的《詳解九章算法》一書里就出現了,這又是我國數學史上的一個偉大成就。如圖所示,在“楊輝三角”中,從1開始箭頭所指的數組成一個鋸齒形數列:
,則此數列前
項和為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2c﹣a)cosB﹣bcosA=0.
(Ⅰ)求角B的大小;
(Ⅱ)求 sinA+sin(C﹣
)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知曲線C1的參數方程為 ,(α為參數,且α∈[0,π]),曲線C2的極坐標方程為ρ=﹣2sinθ.
(Ⅰ)求C1的極坐標方程與C2的直角坐標方程;
(Ⅱ)若P是C1上任意一點,過點P的直線l交C2于點M,N,求|PM||PN|的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com