【題目】已知四棱錐的底面
為正方形,
上面
且
.
為
的中點.
(1)求證: 面
;
(2)求直線與平面
所成角的余弦值.
科目:高中數學 來源: 題型:
【題目】在四棱錐中,底面
是矩形,側棱
底面
,
分別是
的中點,
,
.
(Ⅰ)求證: 平面
;
(Ⅱ)求與平面
所成角的正弦值;
(Ⅲ)在棱上是否存在一點
,使得平面
平面
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)和y=g(x)在[-2,2]上的圖象如圖所示.給出下列四個命題:
①方程f[g(x)]=0有且僅有6個根;②方程g[f(x)]=0有且僅有3個根;
③方程f[f(x)]=0有且僅有7個根;④方程g[g(x)]=0有且僅有4個根.
其中正確命題的序號為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列滿足
,其中
,且
,
為常數.
(1)若是等差數列,且公差
,求
的值;
(2)若,且存在
,使得
對任意的
都成立,求
的最小值;
(3)若,且數列
不是常數列,如果存在正整數
,使得
對任意的
均成立. 求所有滿足條件的數列
中
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的內角A, B, C的對邊分別為a, b, c,且.
(Ⅰ)求角C的大小;
(Ⅱ)設角A的平分線交BC于D,且AD=,若b=
,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,點
,圓
,以動點
為圓心的圓經過點
,且圓
與圓
內切.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)若直線過點
,且與曲線
交于
兩點,則在
軸上是否存在一點
,使得
軸平分
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,平面
平面
,且
,
.四邊形
滿足
,
,
.
為側棱
的中點,
為側棱
上的任意一點.
(1)若為
的中點,求證: 面
平面
;
(2)是否存在點,使得直線
與平面
垂直? 若存在,寫出證明過程并求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com