【題目】設函數.
(1)求的單調區間;
(2)設函數,若當
時,
恒成立,求
的取值范圍.
【答案】(1)在上是增函數,在
上是減函數;(2)
【解析】
(1)求出定義域、,分
,
兩種情況進行討論,通過解不等式
,
可得單調區間;
(2)令,則
,則問題轉化為當
時,
恒成立,進而轉化求函數
的最大值問題.求導數
,根據極值點與區間
的關系進行討論可求得函數的最大值;
(1)解:因為,其中
.所以
,
當時,
,所以
在
上是增函數.
當時,令
,得
,
所以在
上是增函數,在
上是減函數.
(2)令,則
,
根據題意,當時,
恒成立.
所以,
①當時,
時,
恒成立.
所以在
上是增函數,且
時,
,
所以當時,
不會恒成立,故不符題意.
②當時,
時,
恒成立.
所以在
上是增函數,且
,
時,
,
所以當時,
不會恒成立,故不符題意.
③當時,
時,恒有
,故
在
上是減函數,
于是“對任意
都成立”的充要條件是
,
即,解得
,故
.
綜上所述,的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.拋擲一枚硬幣,正面朝上的概率是,所以拋擲兩次一定會出現一次正面朝上的情況
B.某地氣象局預報說,明天本地降水概率為,這說明明天本地有
的區域下雨
C.概率是客觀存在的,與試驗次數無關
D.若買彩票中獎的概率是萬分之一,則買彩票一萬次就有一次中獎
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知z,y之間的一組數據如下表:
x | 1 | 3 | 6 | 7 | 8 |
y | 1 | 2 | 3 | 4 | 5 |
(1)從x ,y中各取一個數,求x+y≥10的概率;
(2)對于表中數據,甲、乙兩同學給出的擬合直線分別為與
,試利用“最小平方法(也稱最小二乘法)”判斷哪條直線擬合程度更好.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“割圓術”是劉徽最突出的數學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數值,這個結果是當時世界上圓周率計算的最精確數據.如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數據:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分
沙漏是古代的一種計時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細沙全部在上部容器中,細沙通過連接管道全部流到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成,圓錐的底面直徑和高均為8cm,細沙全部在上部時,其高度為圓錐高度的(細管長度忽略不計).
(1)如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒(精確到1秒)?
(2)細沙全部漏入下部后,恰好堆成個一蓋住沙漏底部的圓錐形沙堆,求此錐形沙堆的高度(精確到0.1cm).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖:四棱錐P-ABCD底面為一直角梯形,AB⊥AD,CD⊥AD,CD=2AB,PA⊥平面ABCD,F是PC中點。
(Ⅰ)求證:平面PDC⊥平面PAD;
(Ⅱ)求證:BF∥平面PAD。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是曲線
:
上的動點,延長
(
是坐標原點)到
,使得
,點
的軌跡為曲線
.
(1)求曲線的方程;
(2)若點,
分別是曲線
的左、右焦點,求
的取值范圍;
(3)過點且不垂直
軸的直線
與曲線
交于
,
兩點,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com