【題目】廠家在產品出廠前,需對產品做檢驗,第一次檢測廠家的每件產品合格的概率為,如果合格,則可以出廠;如果不合格,則進行技術處理,處理后進行第二次檢測.每件產品的合格率為
,如果合格,則可以出廠,不合格則當廢品回收.
求某件產品能出廠的概率;
若該產品的生產成本為
元/件,出廠價格為
元/件,每次檢測費為
元/件,技術處理每次
元/件,回收獲利
元/件.假如每件產品是否合格相互獨立,記
為任意一件產品所獲得的利潤,求隨機變量
的分布列與數學期望.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣sinx,記f(x)的導函數為f'(x).
(1)若h(x)=axf'(x)是(0,+∞)上的單調遞增函數,求實數a的取值范圍;
(2)若x∈(0,2π),試判斷函數f(x)的極值點個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題12分)
A、B是治療同一種疾病的兩種藥,用若干試驗組進行對比試驗。每個試驗組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀察療效。若在一個試驗組中,服用A有效的小白鼠的只數比服用B有效的多,就稱該試驗組為甲類組。設每只小白鼠服用A有效的概率為,服用B有效的概率為
。
(Ⅰ)求一個試驗組為甲類組的概率;
(Ⅱ) 觀察3個試驗組,用表示這3個試驗組中甲類組的個數,求
的分布列和數學期望。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大型商場的空調在1月到5月的銷售量與月份相關,得到的統計數據如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量 | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經分析發現1月到5月的銷售量可用線性回歸模型擬合該商場空調的月銷量(百件)與月份
之間的相關關系.請用最小二乘法求
關于
的線性回歸方程
,并預測6月份該商場空調的銷售量;
(2)若該商場的營銷部對空調進行新一輪促銷,對7月到12月有購買空調意愿的顧客進行問卷調查.假設該地擬購買空調的消費群體十分龐大,經過營銷部調研機構對其中的500名顧客進行了一個抽樣調查,得到如下一份頻數表:
有購買意愿對應的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數 | 60 | 80 | 120 | 130 | 80 | 30 |
現采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.
參考公式與數據:線性回歸方程,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M,N,P分別是C1D1,BC,A1D1的中點,有下列四個結論:
①AP與CM是異面直線;②AP,CM,DD1相交于一點;③MN∥BD1;
④MN∥平面BB1D1D.
其中所有正確結論的編號是( )
A.①④B.②④C.①④D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數滿足“存在正數
,使得對定義域內的每一個值
,在其定義域內都存在
,使
成立”,則稱該函數為“依附函數”.
(1)分別判斷函數①,②
是否為“依附函數”,并說明理由;
(2)若函數的值域為
,求證:“
是‘依附函數’”的充要條件是“
”.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com