【題目】已知函數(shù)(
).
(1)若,證明:當(dāng)
時(shí),
;
(2)若對于任意的且
,都有
,求
的取值集合.
【答案】(1)證明見解析;(2).
【解析】
(1)將問題轉(zhuǎn)化為當(dāng)時(shí),
,利用導(dǎo)數(shù)得到
的單調(diào)性和最值,進(jìn)行證明;(2)通過函數(shù)端值得到
,將問題等價(jià)于當(dāng)
時(shí),
,對
進(jìn)行分類,通過導(dǎo)數(shù)得到
的單調(diào)性,從而得到符合要求的
.
(1)當(dāng)時(shí),
,
要證當(dāng)時(shí),
,
即證當(dāng)時(shí),
令,
當(dāng)時(shí),
,
在
內(nèi)單調(diào)遞減
當(dāng)時(shí),
,
在
內(nèi)單調(diào)遞增,
故.證畢.
(2)先分析端值,當(dāng)時(shí),
,
,
要使,需有
,即
;
當(dāng)時(shí),
,
,
要使,需有
;
故必須有.
由知其分子恒正,
令,
于是問題等價(jià)于當(dāng)時(shí),
;
當(dāng)時(shí),
.
注意到.
①當(dāng)時(shí)
,
此時(shí)當(dāng)時(shí),
,
在
單調(diào)遞減,
于是,這不符合題意;
②當(dāng)時(shí),
,得
,
.
(i)當(dāng)時(shí),
,
,
在
單調(diào)遞增,
結(jié)合可知符合題意;
(ii)當(dāng)時(shí),
,此時(shí)當(dāng)
時(shí)
,
于是在在
單調(diào)遞減,
故在內(nèi)
,這不符合題意;
(iii)當(dāng)時(shí),
,此時(shí)當(dāng)
時(shí)
,
于是在在
單調(diào)遞減,
故在內(nèi)
,這不符合題意;
綜上:符合題意的取值集合為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面是邊長為2且
的菱形,
平面
,
,且
,
.
(1)求證:平面平面
;
(2)點(diǎn)在線段
上,且三棱錐
的體積是三棱錐
的體積的兩倍,求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知C是以AB為直徑的圓周上一點(diǎn),平面
.
(1)求證:平面平面
;
(2)若異面直線PB與AC所成的為,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD是菱形,AC與BD交于點(diǎn)O,底面ABCD,點(diǎn)M為PC中點(diǎn),
,
,
.
(1)求異面直線AP與BM所成角的余弦值;
(2)求平面ABM與平面PAC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)老師給出一個(gè)函數(shù),甲、乙、丙、丁四個(gè)同學(xué)各說出了這個(gè)函數(shù)的一條性質(zhì):甲:在
上函數(shù)單調(diào)遞減;乙:在
上函數(shù)單調(diào)遞增;丙:在定義域R上函數(shù)的圖象關(guān)于直線
對稱;丁:
不是函數(shù)的最小值.老師說:你們四個(gè)同學(xué)中恰好有三個(gè)人說的正確.那么,你認(rèn)為____說的是錯誤的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)求在區(qū)間
上的值域;
(2)是否存在實(shí)數(shù),對任意給定的
,在
存在兩個(gè)不同的
使得
,若存在,求出
的范圍,若不存在,說出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)的名同學(xué)準(zhǔn)備拼車去旅游,其中大一、大二、大三、大四每個(gè)年級各兩名,分乘甲、乙兩輛汽車.每車限坐
名同學(xué)(乘同一輛車的
名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的
名同學(xué)中恰有
名同學(xué)是來自于同一年級的乘坐方式共有_______種(有數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:
(1)設(shè)表示在這塊地上種植1季此作物的利潤,求
的分布列;
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線C1,C2的極坐標(biāo)方程分別為ρ=-2cosθ,ρcos=1.
(1)求曲線C1和C2的公共點(diǎn)的個(gè)數(shù);
(2)過極點(diǎn)作動直線與曲線C2相交于點(diǎn)Q,在OQ上取一點(diǎn)P,使|OP|·|OQ|=2,求點(diǎn)P的軌跡,并指出軌跡是什么圖形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com