【題目】在獨立性檢驗中,統計量有三個臨界值:2.706,3.841和6.635.當
時,有90%的把握說明兩個事件有關;當
時,有95%的把握說明兩個事件有關,當
時,有99%的把握說明兩個事件有關,當
時,認為兩個事件無關.在一項打鼾與心臟病的調查中,共調查了2000人,經計算
.根據這一數據分析,認為打鼾與患心臟病之間( )
A. 有95%的把握認為兩者有關 B. 約95%的打鼾者患心臟病
C. 有99%的把握認為兩者有關 D. 約99%的打鼾者患心臟病
科目:高中數學 來源: 題型:
【題目】在海岸A處,發現北偏東方向,距離A為
n mile的B處有一艘走私船,在A處北偏西
方向,距離A為2 n mile的C處有一艘緝私艇奉命以
n mile / h的速度追截走私船,此時,走私船正以10 n mile / h的速度從B處向北偏東
方向逃竄,問緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時間。(本題解題過程中請不要使用計算器,以保證數據的相對準確和計算的方便)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)g(x)分別是定義在R上的偶函數和奇函數,且f(x)+g(x)=23x.
(1)證明:f(x)-g(x)=23-x,并求函數f(x),g(x)的解析式;
(2)解關于x不等式:g(x2+2x)+g(x-4)>0;
(3)若對任意x∈R,不等式f(2x)≥mf(x)-4恒成立,求實數m的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,將邊長為6的等邊三角形各切去一個全等的四邊形,再沿虛線折起,做成一個無蓋的正三棱柱形的容器.
(1)若這個容器的底面邊長為,容積為
,寫出
關于
的函數關系式并注明定義域;
(2)求這個容器容積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學開設甲、乙、丙三門選修課,學生是否選修哪門課互不影響,已知某學生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學生選修的課程門數和沒有選修的課程門數的乘積.
(1)記“函數為
上的偶函數”為事件
,求事件
的概率;
(2)求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小區內有一塊以為圓心半徑為20米的圓形區域.廣場,為豐富市民的業余文化生活,現提出如下設計方案:如圖,在圓形區域內搭建露天舞臺,舞臺為扇形
區域,其中兩個端點
,
分別在圓周上;觀眾席為梯形
內且在圓
外的區域,其中
,
,且
,
在點
的同側.為保證視聽效果,要求觀眾席內每一個觀眾到舞臺
處的距離都不超過60米.設
.
(1)求的長(用
表示);
(2)對于任意,上述設計方案是否均能符合要求?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|﹣ x,(a>0). (Ⅰ)若a=3,解關于x的不等式f(x)<0;
(Ⅱ)若對于任意的實數x,不等式f(x)﹣f(x+a)<a2+ 恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)上一點P(3,t)到其焦點的距離為4.
(1)求p的值;
(2)過點Q(1,0)作兩條直線l1 , l2與拋物線分別交于點A、B和C、D,點M,N分別是線段AB和CD的中點,設直線l1 , l2的斜率分別為k1 , k2 , 若k1+k2=3,求證:直線MN過定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com