右表是一個由正數(shù)組成的數(shù)表,數(shù)表中各行依次成等差數(shù)列,各列依次成等比數(shù)列,且公比都相等,已知
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)求數(shù)列
的前
項(xiàng)和
。
(1);(2)
為偶數(shù)時,
,
為奇數(shù)時,
.
解析試題分析:(1)通過讀表得到表達(dá)式,利用等差等比數(shù)列的通項(xiàng)公式將表達(dá)式展開,求出,得到數(shù)列
的通項(xiàng)公式;(2)將第一問的結(jié)論代入,先用分組求和法,將式子分成兩組,再用錯位相減法求第一部分,第二部分用并項(xiàng)法求和.
試題解析:(1)設(shè)第一行依次組成的等差數(shù)列的公差是,等比數(shù)列的公比是
,
則, 2分
, 4分
解得:,所以:
; 6分
(2),
, 8分
記,則
,
兩式相減得:,所以
, 10分
所以為偶數(shù)時,
,
為奇數(shù)時,
。 12分
考點(diǎn):1.等差等比數(shù)列的通項(xiàng)公式;2.分組求和法;3.錯位相減法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知單調(diào)遞增的等比數(shù)列滿足:
,且
是
的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)若,
,求使
成立的正整數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在等差數(shù)列{}中,
=3,前7項(xiàng)和
=28。
(I)求數(shù)列{}的公差d;
(II)若數(shù)列{}為等比數(shù)列,且
,
求數(shù)列
}的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和Sn滿足且
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式:
(Ⅱ)設(shè)Tn為數(shù)列{Sn}的前n項(xiàng)和,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是數(shù)列
的前
項(xiàng)和,
,
,
.
(1)求證:數(shù)列是等差數(shù)列,并
的通項(xiàng);
(2)設(shè),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)公差為(
)的等差數(shù)列
與公比為
(
)的等比數(shù)列
有如下關(guān)系:
,
,
.
(Ⅰ)求和
的通項(xiàng)公式;
(Ⅱ)記,
,
,求集合
中的各元素之和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的前n項(xiàng)和為 Sn
(I)若a1=1,S10= 100,求{an}的通項(xiàng)公式;
(II)若Sn=n2-6n,解關(guān)于n的不等式Sn+an>2n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知等差數(shù)列{an}的公差d > 0,且是方程x2-14x+45=0的兩根,求數(shù)列
通項(xiàng)公式(2)設(shè)
,數(shù)列{bn}的前n項(xiàng)和為Sn,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列滿足
,數(shù)列
滿足
.
(1)求數(shù)列和
的通項(xiàng)公式;
(2)求數(shù)列的前
項(xiàng)和;
(3)若,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com