【題目】設{an}是公比不為1的等比數列,其前n項和為Sn , 且a5 , a3 , a4成等差數列.
(1)求數列{an}的公比;
(2)證明:對任意k∈N+ , Sk+2 , Sk , Sk+1成等差數列.
【答案】
(1)
解:設{an}的公比為q(q≠0,q≠1)
∵a5,a3,a4成等差數列,∴2a3=a5+a4,
∴
∵a1≠0,q≠0,
∴q2+q﹣2=0,解得q=1或q=﹣2
∵q≠1,
∴q=﹣2
(2)
證明:對任意k∈N+,Sk+2+Sk+1﹣2Sk=(Sk+2﹣Sk)+(Sk+1﹣Sk)=ak+2+ak+1+ak+1=2ak+1+ak+1×(﹣2)=0
∴對任意k∈N+,Sk+2,Sk,Sk+1成等差數列.
【解析】(1)設{an}的公比為q(q≠0,q≠1),利用a5 , a3 , a4成等差數列結合通項公式,可得 ,由此即可求得數列{an}的公比;(2)對任意k∈N+ , Sk+2+Sk+1﹣2Sk=(Sk+2﹣Sk)+(Sk+1﹣Sk)=ak+2+ak+1+ak+1=2ak+1+ak+1×(﹣2)=0,從而得證.
【考點精析】認真審題,首先需要了解等比數列的通項公式(及其變式)(通項公式:),還要掌握等差數列的性質(在等差數列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數列是等差數列)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】設10≤x1<x2<x3<x4≤104 , x5=105 , 隨機變量ξ1取值x1、x2、x3、x4、x5的概率均為0.2,隨機變量ξ2取值 、
、
、
、
的概率也均為0.2,若記Dξ1、Dξ2分別為ξ1、ξ2的方差,則( )
A.Dξ1>Dξ2
B.Dξ1=Dξ2
C.Dξ1<Dξ2
D.Dξ1與Dξ2的大小關系與x1、x2、x3、x4的取值有關
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在空間直角坐標系中有直三棱柱ABC﹣A1B1C1 , CA=CC1=2CB,則直線BC1與直線AB1夾角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,其中
,
.
(1)設,若函數
的圖象的一條對稱軸為直線
,求
的值;
(2)若將的圖象向左平移
個單位,或者向右平移
個單位得到的圖象都過坐標原點,求所有滿足條件的
和
的值;
(3)設,
,已知函數
在區間
上的所有零點依次為
,且
,
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com