日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=4,AB=4 ,∠CDA=120°,點N在線段PB上,且PN=2.

(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)求二面角A﹣PC﹣B的余弦值.

【答案】
(1)證明:∵△ABC是正三角形,M是AC中點,

∴BM⊥AC,即BD⊥AC,

又∵PA⊥平面ABCD,∴PA⊥BD,

又PA∩AC=A,∴BD⊥平面PAC,

∴BD⊥PC.


(2)證明:在正△ABC中,BM=6,

在△ACD中,∵M為AC中點,DM⊥AC,∴AD=CD,

∠ADC=120°,∴DM=2,

=

在Rt△PAB中,PA=4,AB=4 ,PB=8.

= = ,∴MN∥PD,

又MN平面PDC,PD平面平面PDC,

∴MN∥平面PDC.


(3)解:∵∠BAD=∠BAC+∠CAD=90°,

∴AB⊥AD,以A為坐標原點,分別以AB、AD、AP所在直線為x軸,y軸,z軸,建立空間直角坐標系,

∴B(4 ,0,0),C(2 ,6,0),D(0,4,0),P(0,0,4),

=(2 ,6,﹣4), =(4 ,0,﹣4),

由(2)知 =(4 ,﹣4,0)是平面PAC的法向量,

設平面PBC的一個法向量為 =(x,y,z),

,即 ,取z=3,得 =( ),

設二面角A﹣PC﹣B的平面角為θ,

則cosθ= = =

∴二面角A﹣PC﹣B的余弦值為


【解析】(1)導出BD⊥AC,PA⊥BD,從而BD⊥平面PAC,由此能證明BD⊥PC.(2)推導出DM⊥AC,AD=CD,DM=2, = ,從而MN∥PD,由此能證明MN∥平面PDC.(3)以A為坐標原點,分別以AB、AD、AP所在直線為x軸,y軸,z軸,建立空間直角坐標系,利用向量法能求出二面角A﹣PC﹣B的余弦值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓,直線被圓所截得的弦的中點為P53).(1)求直線的方程;(2)若直線與圓相交于兩個不同的點,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學高三年級從甲、乙兩個班級各選出7名學生參加數學競賽,他們取得的成績(滿分100分)的莖葉圖如圖,其中甲班學生成績的中位數是83,乙班學生成績的平均數是86,則x+y的值為(

A.168
B.169
C.8
D.9

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F分別在BC,AD上,EF∥AB.現將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE= ,在折疊后的線段AD上是否存在一點P,且 ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,說明理由;
(Ⅱ)求三棱錐A﹣CDF的體積的最大值,并求此時二面角E﹣AC﹣F的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】f(x)是定義在(0,+∞)上單調函數,且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實數解所在的區間是(
A.(0,
B.( ,1)
C.(1,e)
D.(e,3)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線E:y2=2px(p>0)的準線與x軸交于點K,過點K作圓(x﹣5)2+y2=9的兩條切線,切點為M,N,|MN|=3
(1)求拋物線E的方程;
(2)設A,B是拋物線E上分別位于x軸兩側的兩個動點,且 (其中O為坐標原點).
①求證:直線AB必過定點,并求出該定點Q的坐標;
②過點Q作AB的垂線與拋物線交于G,D兩點,求四邊形AGBD面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2 sin cos ﹣2sin2 (ω>0)的最小正周期為3π.
(I)求函數f(x)的單調遞增區間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C所對的邊,a<b<c, a=2csinA,并且f( A+ )= ,求cosB的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=AD=a,E為CD上任意一點.
(I)求證:B1E⊥AD1
(Ⅱ)若CD= a,是否存在這樣的E點,使得AD1與平面B1AE成45°的角?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,平面平面,底面為梯形,,且均為正三角形,的中點,重心.

(1)求證:平面

(2)求三棱錐的體積.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美淫视频 | 国产看片网站 | 亚洲 欧美日韩 国产 中文 | www.日韩在线视频 | 亚洲国产精品99久久久久久久久 | 久久69 | 日本在线观看视频一区 | 逼操 | 亚洲欧美另类在线观看 | 久久中文字幕电影 | 色综合免费视频 | 在线中文视频 | 久久免费视频3 | 99久久这里只有精品 | 成人免费视频视频在线观看 免费 | 99精品欧美一区二区三区 | 成人超碰在线 | 91精品一区二区 | 免费看的黄色网 | 婷婷亚洲综合 | xxxx欧美| 美女扒开内裤让男人桶 | 色婷婷综合久久久久中文一区二区 | 久久久网 | 日韩精品一区二区三区中文在线 | 激情五月婷婷 | 亚洲a网 | 在线观看国产视频 | 国产xxx在线观看 | 精品中文字幕一区二区三区 | 一级片的网址 | 九色国产 | 亚洲免费成人av | 精品中文在线 | 日韩av一区在线观看 | 亚洲精品一区久久久久久 | 久久久99精品免费观看 | 91中文字幕在线观看 | 国产精品一区二区在线观看免费 | 妞干网免费 | 免费av毛片|