【題目】已知以點A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點,Q是MN的中點.
(1)求圓A的方程;
(2)當|MN|=2時,求直線l的方程.
【答案】(1)圓A的方程為(x+1)2+(y-2)2=20.(2)直線l的方程為x=-2或3x-4y+6=0.
【解析】試題分析:(1)利用圓心到切線的距離等于半徑求得 ;(2)先檢驗當直線斜率不存在時
符合題意;當直線斜率存在是,設其方程為:
,再利用點到直線的距離公式和弦長公式,即可求得
,從而求得另一條直線.
試題解析:(1)設圓A的半徑為R.
由于圓A與直線l1:x+2y+7=0相切,
∴R==2
.
∴圓A的方程為(x+1)2+(y-2)2=20.
(2)①當直線l與x軸垂直時,易知x=-2符合題意;
②當直線l的斜率存在時,設直線l的方程為y=k(x+2).
即kx-y+2k=0.
連接AQ,則AQ⊥MN.
∵|MN|=2,∴|AQ|=
=1,
則由|AQ|==1,
得k=,∴直線l:3x-4y+6=0.
故直線l的方程為x=-2或3x-4y+6=0.
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱函數
的一個上界.已知函數
,
.
(1)若函數為奇函數,求實數
的值;
(2)在第(1)的條件下,求函數在區間
上的所有上界構成的集合;
(3)若函數在
上是以3為上界的有界函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,“共享單車”的出現為市民“綠色出行”提供了極大的方便,某共享單車公司計劃在甲、乙兩座城市共投資240萬元,根據行業規定,每個城市至少要投資80萬元,由前期市場調研可知:甲城市收益與投入
(單位:萬元)滿足
,乙城市收益
與投入
(單位:萬元)滿足
,設甲城市的投入為
(單位:萬元),兩個城市的總收益為
(單位:萬元).
(1)當投資甲城市128萬元時,求此時公司總收益;
⑵試問如何安排甲、乙兩個城市的投資,才能使公司總收益最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=AA1=4,AB=3,AB⊥AC.
(Ⅰ)求證:A1C⊥平面ABC1;
(Ⅱ)求二面角A﹣BC1﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知非空集合A、B滿足以下四個條件:
①A∪B={1,2,3,4,5,6,7};②A∩B=;③A中的元素個數不是A中的元素;④B中的元素個數不是B中的元素.
若集合A含有2個元素,則滿足條件的A有個.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com