【題目】如圖1,在直角梯形ABCD中,,
,
,四邊形ABEF是正方形.將正方形ABEF沿AB折起到四邊形
的位置,使平面
平面ABCD,M為
的中點(diǎn),如圖2.
圖1圖2
(1)求證:;
(2)求平面與平面
所成銳二面角的余弦值.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)利用正方形的性質(zhì),以及線面垂直的性質(zhì),證得,得到
平面
,即可得到
;
(2)以點(diǎn)B為坐標(biāo)原點(diǎn),分別以BC,所在直線為x,z軸,建立空間直角坐標(biāo)系,分別求得平面
與平面
的法向量,利用向量的夾角公式,即可求解.
(1)因?yàn)?/span>為正方形,所以
,
因?yàn)槠矫?/span>平面
,平面
平面
,
平面
,所以
平面ABCD,因?yàn)?/span>
平面ABCD,所以
設(shè),則
,
,且
,
平面
,又
平面
,
,
(2)如圖,以點(diǎn)B為坐標(biāo)原點(diǎn),分別以BC,所在直線為x,z軸,建立如圖所示的空間直角坐標(biāo)系
,則
,
,
,
,
所以,
,
,
設(shè)平面的一個(gè)法向量為
,
由,得
,令
,得
,
,所以
,
平面的法向量為
,
設(shè)平面與平面
所成銳二面角為θ,
則,
所以平面與平面
所成銳二面角的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與拋物線
:
交于
,
兩點(diǎn),且
的面積為16(
為坐標(biāo)原點(diǎn)).
(1)求的方程.
(2)直線經(jīng)過(guò)
的焦點(diǎn)
且
不與
軸垂直,
與
交于
,
兩點(diǎn),若線段
的垂直平分線與
軸交于點(diǎn)
,試問(wèn)在
軸上是否存在點(diǎn)
,使
為定值?若存在,求該定值及
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】哈三中團(tuán)委組織了“古典詩(shī)詞”的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生(男女各30名),將其成績(jī)分成六組,
,…,
,其部分頻率分布直方圖如圖所示.
(Ⅰ)求成績(jī)?cè)?/span>的頻率,補(bǔ)全這個(gè)頻率分布直方圖,并估計(jì)這次考試的眾數(shù)和中位數(shù);
(Ⅱ)從成績(jī)?cè)?/span>和
的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率;
(Ⅲ)我們規(guī)定學(xué)生成績(jī)大于等于80分時(shí)為優(yōu)秀,經(jīng)統(tǒng)計(jì)男生優(yōu)秀人數(shù)為4人,補(bǔ)全下面表格,并判斷是否有99%的把握認(rèn)為成績(jī)是否優(yōu)秀與性別有關(guān)?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男 | 4 | 30 | |
女 | 30 | ||
合計(jì) | 60 |
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某校甲、乙、丙三個(gè)興趣小組的學(xué)生人數(shù)分別為36,24,12.現(xiàn)采用分層抽樣的方法從中抽取6人,進(jìn)行睡眠質(zhì)量的調(diào)查.
(1)應(yīng)從甲、乙、丙三個(gè)興趣小組的學(xué)生中分別抽取多少人?
(2)設(shè)抽出的6人分別用、
、
、
、
、
表示,現(xiàn)從6人中隨機(jī)抽取2人做進(jìn)一步的身體檢查.
(i)試用所給字母列出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的2人來(lái)自同一興趣小組”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,梯形中,
,
,
,
為
的中點(diǎn),將
沿
翻折,構(gòu)成一個(gè)四棱錐
,如圖2.
(1)求證:異面直線與
垂直;
(2)求直線與平面
所成角的大小;
(3)若三棱錐的體積為
,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)拋物線上一點(diǎn)
,作兩條直線分別交拋物線于
,
,當(dāng)
與
的斜率存在且傾斜角互補(bǔ)時(shí):
(Ⅰ)求的值;
(Ⅱ)若直線在
軸上的截距
時(shí),求
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓經(jīng)過(guò)伸縮變換
后得到曲線
.以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求曲線的直角坐標(biāo)方程及直線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是
上一動(dòng)點(diǎn),求點(diǎn)
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】明初出現(xiàn)了一大批杰出的騎兵將領(lǐng),比如徐達(dá)、常遇春、李文忠、藍(lán)玉和朱棣.明初騎兵軍團(tuán)擊敗了不可一世的蒙古騎兵,是當(dāng)時(shí)世界上最強(qiáng)騎兵軍團(tuán).假設(shè)在明軍與元軍的某次戰(zhàn)役中,明軍有8位將領(lǐng),善用騎兵的將領(lǐng)有5人;元軍有8位將領(lǐng),善用騎兵的有4人.
(1)現(xiàn)從明軍將領(lǐng)中隨機(jī)選取4名將領(lǐng),求至多有3名是善用騎兵的將領(lǐng)的概率;
(2)在明軍和元軍的將領(lǐng)中各隨機(jī)選取2人,為善用騎兵的將領(lǐng)的人數(shù),寫出
的分布列,并求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已如橢圓E:(
)的離心率為
,點(diǎn)
在E上.
(1)求E的方程:
(2)斜率不為0的直線l經(jīng)過(guò)點(diǎn),且與E交于P,Q兩點(diǎn),試問(wèn):是否存在定點(diǎn)C,使得
?若存在,求C的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com