A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 2$\sqrt{3}$ |
分析 求出雙曲線的漸近線方程,由已知條件可得a,b的關系,再由離心率公式,計算即可得到所求值.
解答 解:雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的漸近線方程為y=±$\frac{b}{a}$x,
x=$\sqrt{3}$y為雙曲線C的一條漸近線,可得$\frac{b}{a}$=$\frac{\sqrt{3}}{3}$,
則雙曲線的離心率為e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}+{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{1}{3}}$=$\frac{2\sqrt{3}}{3}$.
故選:C.
點評 本題考查雙曲線的離心率的求法,注意運用雙曲線的漸近線方程和基本量的關系,考查運算能力,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 12種 | B. | 20種 | C. | 24種 | D. | 48種 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{2}$或$\frac{\sqrt{21}}{3}$ | D. | $\frac{\sqrt{3}}{3}$或$\frac{\sqrt{21}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{5}}}{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com