日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知
a
=(sinx,-cosx),
b
=(
3
cosx,cosx)
,函數f(x)=
a
b
-
1
2
,x∈R.
(1)求函數f(x)的最大值和最小正周期;
(2)設△ABC的內角A,B,C的對邊分別a,b,c且c=3,f(C)=0,若sin(A+C)=2sinA,求a,b的值.
分析:(1)利用向量的數量積公式,結合二倍角公式,輔助角公式,化簡函數,即可求函數f(x)的最大值和最小正周期;
(2)先求C,再根據sin(A+C)=2sinA,求A,可得三角形為直角三角形,從而可得結論.
解答:解:(1)∵
a
=(sinx,-cosx),
b
=(
3
cosx,cosx)

f(x)=
a
b
-
1
2
=
3
sinxcosx-cos2x-
1
2
=
3
2
sin2x-
1
2
cos2x-1
=sin(2x-
π
6
)-1
∴sin(2x-
π
6
)=1時,函數f(x)的最大值為0
函數的最小正周期為T=
2
=π;
(2)∵f(C)=0,∴sin(2C-
π
6
)-1=0,∴C=
π
3

∵sin(A+C)=2sinA,∴sin(A+
π
3
)=2sinA,∴tanA=
3
3
,∴A=
π
6

∴B=
π
2

∵c=3,
∴a=3tan
π
6
=
3
,b=2
3
點評:本題考查向量的數量積運算,考查三角函數的化簡,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知
a
=(sinx,1)
,
b
=(2cosx,2+cos2x)
,函數f(x)=
a
b

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函數f(x)的最大值及取得最大值的自變量x的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(sinx,cosx)
b
=(
3
cosx,cosx)
,設函數f(x)=
a
b
(x∈R)
(1)求f(x)的最小正周期及單調遞增區間;
(2)當x∈[-
π
6
,
12
]
時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(sinx,-cosx),
b
=(cosx,
3
cosx)
,函數f(x)=
a
b
+
3
2

(1)求f(x)的最小正周期,并求其圖象對稱中心的坐標;
(2)當0≤x≤
π
2
時,求函數f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•蕪湖二模)已知
a
=(sinx,1)
b
=(cosx,-
1
2
)
,函數f(x)=
a
•(
a
-
b
)
,那么下列四個命題中正確命題的序號是
②③④
②③④

①f(x)是周期函數,其最小正周期為2π.
②當x=
π
8
時,f(x)有最小值2-
2
2

③[-
7
8
π,-
3
8
π]是函數f(x)的一個單調遞增區間;
④點(-
π
8
,2)是函數f(x)的一個對稱中心.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(sinx,cosx),
b
=(
3
cosx,cosx)
,設函數f(x)=
a
b
(x∈R)
(1)求f(x)的最小正周期及單調遞增區間;
(2)當x∈[-
π
6
,
12
]
時,求f(x)的最值并指出此時相應的x的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品国产乱码久久久久久1区2区 | 我爱操 | 亚洲成人av在线 | 国产精品永久免费自在线观看 | 中文字幕在线不卡 | 一区二区中文字幕在线观看 | 草逼网页 | 国产 日韩 欧美 中文 在线播放 | 欧美日本不卡 | 国外成人在线视频网站 | 久久亚洲一区二区 | 不卡黄色| 国产精品7 | 一级毛片免费看 | 国内精品视频一区国产 | 成人精品一区二区 | 污网址在线免费观看 | 日本美女一区二区 | 亚洲综合社区 | 欧美二三区 | 欧美极品一区 | 国产亚洲精品综合一区91555 | 在线观看www| 99久久99久久精品免费看蜜桃 | 欧美在线网站 | 国产精品久久久久久久久久久久冷 | 极品久久 | 日韩高清国产一区在线 | 国产精精品 | 成人三级在线 | 激情欧美一区 | 色综合99| 精品久久久久久久久久久久久久 | 中文字幕成人 | 久久这里只有精品首页 | 老汉色影院 | 亚洲精品成人 | 日韩美女av在线 | 亚洲午夜精品一区二区三区 | 国产高潮好爽受不了了夜色 | 亚洲专区在线播放 |