日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

12.設(shè)遞增的等比數(shù)列{an}的前n項(xiàng)和為Sn,已知2(an+an+2)=5an+1,且$a_5^2={a_{10}}$,
(1)求數(shù)列{an}通項(xiàng)公式及前n項(xiàng)和為Sn
(2)設(shè)${b_n}={S_n}•{log_2}{a_{n+1}}({n∈{N^*}})$,求數(shù)列{bn}的前n項(xiàng)和為Tn

分析 (1)利用等比數(shù)列的通項(xiàng)公式與求和公式即可得出.
(2)利用“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的求和公式即可得出.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,
則由2(an+an+1)=5an+1得,2q2-5q+2=0,解得$q=\frac{1}{2}$或q=2,
又由$a_5^2={a_{10}}$知,${({{a_1}{q^4}})^2}={a_1}{q^9}$,∴a1=q,
∵{an}為遞增數(shù)列,∴${a_1}=q=2,{a_n}={2^n},{S_n}={2^{n+1}}-2$.
(2)${b_n}={S_n}•{log_2}{a_{n+1}}=({{2^{n+1}}-2})({n+1})=({n+1})•{2^{n+1}}-2({n+1})$,
記數(shù)列{(n+1)•2n+1}的首n項(xiàng)和為Pn,則${P_n}=2•{2^2}+3•{2^3}+4•{2^4}+…+({n+1})•{2^{n+1}}$,$2{P_n}=2•{2^3}+3•{2^4}+4•{2^5}+…+({n+1})•{2^{n+2}}$,
兩式相減得:$-{P_n}={2^3}+({{2^3}+{2^4}+…+{2^{n+1}}})-({n+1})•{2^{n+2}}={2^3}+\frac{{{2^3}({{2^{n-1}}-1})}}{2-1}-({n+1})•{2^{n+2}}=-n•{2^{n+2}}$,
即${P_n}=n•{2^{n+2}}$,
又{2(n+1)}的前n項(xiàng)和為2(2+3+4+…+n+1)=n(n+3),
∴${T_n}=n•{2^{n+2}}-n({n+3})$.

點(diǎn)評 本題考查了“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在公比為正數(shù)的等比數(shù)列{an}中,a3-a1=$\frac{16}{27}$,a2=-$\frac{2}{9}$,數(shù)列{bn}(bn>0)的前n項(xiàng)和為Sn滿足Sn-Sn-1=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2),且S10=100.
( I)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
( II)求數(shù)列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若a>b>0>c,則ac<bc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|2x2+ax+2=0,a∈R},B={x|x2+3x+2a=0,a∈R},A∩B={2}且A∪B=I,則(∁IA)∪(∁IB)=(  )
A.{-5,$\frac{1}{2}$}B.{-5,$\frac{1}{2}$,2}C.{-5,2}D.{$\frac{1}{2}$,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.計(jì)算下列各式的值
(1)若a+a-1=4,則求a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$的值
(2)已知2lg$\frac{x-y}{2}$=lgx+lgy,求log${\;}_{(3-2\sqrt{2})}$$\frac{x}{y}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),若k$\overrightarrow{a}$+$\overrightarrow{b}$與$\overrightarrow{a}$垂直,則實(shí)數(shù)k值為(  )
A.$\frac{1}{4}$B.$-\frac{1}{5}$C.$-\frac{2}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}}\right.$(θ為參數(shù),θ∈[0,π]),直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}}\right.$(t為參數(shù)).
(1)點(diǎn)D在曲線C上,且曲線C在點(diǎn)D處的切線與直線x+y+2=0垂直,求點(diǎn)D的極坐標(biāo);
(2)設(shè)直線l與曲線C有兩個(gè)不同的交點(diǎn),求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=$\sqrt{2+x}+\sqrt{3-x}$的定義域?yàn)閇-2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.計(jì)算lg200+$\frac{1}{2}$lg25+5(lg2+lg5)3-($\frac{1}{27}$)${\;}^{-\frac{1}{3}}$=(  )
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产激情第一页 | 亚洲色图 偷拍自拍 | 天天综合网7799精品 | 国产欧美日韩综合精品一区二区 | 精品欧美一区二区三区久久久小说 | 国产免费av一区二区三区 | 欧美精品色 | 久久久久久美女 | 天天夜夜骑 | 日本一级淫片免费看 | 国产精品美女久久久久久免费 | 免费福利小视频 | 欧美亚洲视频在线观看 | 欧美成人高清视频 | 91精品久久久久久久99 | 亚洲精品中文字幕中文字幕 | 免费一级欧美在线观看视频 | 黄视频网站免费观看 | 国产精品二区三区 | 中文字幕一区二区三区在线视频 | 先锋影音在线 | 日韩精品一区二区三区在线观看 | 国产片侵犯亲女视频播放 | 日日夜夜精品网站 | 国产在线精品视频 | 黄桃av| 国产精品久久久久久久久久久杏吧 | 日韩免费视频一区二区 | 国产精品精品视频一区二区三区 | 国产日韩欧美一区二区 | 成人高清在线 | a在线观看 | 亚洲成人精品 | 亚洲成人黄色 | 狠狠综合久久 | 国产九九在线观看 | 不卡久久| 久久综合亚洲 | 羞羞视频网站在线看 | 91av国产在线视频 | 粉嫩高清一区二区三区精品视频 |