A. | [1,2] | B. | [-2,1] | C. | [-2,-1] | D. | [-1,2] |
分析 作出不等式組對應的平面區域,利用z的幾何意義進行求解即可.
解答 解:作出不等式組對應的平面區域如圖:
由z=x-y,得y=x-z表示,斜率為1縱截距為-z的一組平行直線,
平移直線y=x-z,當直線y=x-z經過點B時,直線y=x-z的截距最小,此時z最大,
當直線經過點C時,此時直線y=x-z截距最大,z最。
由$\left\{\begin{array}{l}{x=2}\\{x+2y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,即B(2,0),此時zmax=2.
由$\left\{\begin{array}{l}{y-1=0}\\{x+2y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,即C(0,1),此時zmin=0-1=-1.
∴-1≤z≤2,
故選:D.
點評 本題主要考查線性規劃的基本應用,利用z的幾何意義是解決線性規劃問題的關鍵,注意利用數形結合來解決.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{3\sqrt{10}}}{20}$ | B. | $\frac{{\sqrt{10}}}{20}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|0<x≤1} | B. | {x|-1≤x<2} | C. | {x|-1≤x<0} | D. | {x|1≤x<2} |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com