已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上截距相等,求切線的方程;
(2)若為圓C上任意一點,求
的最大值與最小值;
(3)從圓C外一點P(x,y)向圓引切線PM,M為切點,O為坐標原點,且有|PM|=|PO|,求當|PM|最小時的點P的坐標。
(1)或
;或
,或
;(2)最大值為-1,最小值為-7.;(3)當y=
即P(
)時,|PM|最小.
解析試題分析:(1)當截距為0時,設出切線方程為y=kx,同理列出關于k的方程,求出方程的解即可得到k的值,得到切線的方程;當截距不為零時,根據圓C的切線在x軸和y軸的截距相等,設出切線方程x+y=b,然后利用點到直線的距離公式求出圓心到切線的距離d,讓d等于圓的半徑r,列出關于b的方程,求出方程的解即可得到b的值,得到切線的方程;(2)設,則
表示直線MA的斜率;其中A(1,-2)是定點;因為
在圓C上,所以圓C與直線MA有公共點,而直線MA方程為:y+2=
(x-1),則有:C點到直線MA的距離不大于圓C的半徑,即:
,解得:
,即可求出
的最大值為和最小值;(3)根據圓切線垂直于過切點的半徑,得到三角形CPM為直角三角形,根據勾股定理表示出點P的軌跡方程,由軌跡方程得到動點P的軌跡為一條直線,所以|PM|的最小值就是|PO|的最小值,求出原點到P軌跡方程的距離即為|PO|的最小值,然后利用兩點間的距離公式表示出P到O的距離,把P代入動點的軌跡方程,兩者聯立即可此時P的坐標.
解:圓C的方程為:(x+1)2+(y-2)2=2
(1)圓C的切線在x軸和y軸上截距相等時,切線過原點或切線的斜率為;
當切線過原點時,設切線方程為:y=kx,相切則:,得
;
當切線的斜率為時,設切線方程為:y=-x+b,由相切得:
,
得b=1或b=5;故所求切線方程為:或
;或
,或
(2)設,則
表示直線MA的斜率;其中A(1,-2)是定點;
因為在圓C上,所以圓C與直線MA有公共點,
而直線MA方程為:y+2=(x-1),則有:C點到直線MA的距離不大于圓C的半徑
即:,解得:
,即
的最大值為-1,最小值為-7.
(3)由圓的切線長公式得|PM|2=|PC|2-R2=(x+1)2+(y-2)2-2;
由|PM|=|PO|得:(x+1)2+(y-2)2-2=x2+y2;即2x-4y+3=0, 即x=2y-
此時|PM|=|PO|=
所以當y=即P(
)時,|PM|最小.
考點:1.直線的方程;2.直線與圓的位置關系.
科目:高中數學 來源: 題型:解答題
已知直線l:kx-y+1+2k=0(k∈R)
(1)證明:直線l過定點;
(2)若直線l不經過第四象限,求k的取值范圍;
(3)若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設△AOB的面積為S,求S的最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的一個頂點為B(0,4),離心率
, 直線
交橢圓于M,N兩點.
(1)若直線的方程為y=x-4,求弦MN的長:
(2)如果BMN的重心恰好為橢圓的右焦點F,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,點
依次滿足
。
(1)求點的軌跡;
(2)過點作直線
交以
為焦點的橢圓于
兩點,線段
的中點到
軸的距離為
,且直線
與點
的軌跡相切,求該橢圓的方程;
(3)在(2)的條件下,設點的坐標為
,是否存在橢圓上的點
及以
為圓心的一個圓,使得該圓與直線
都相切,如存在,求出
點坐標及圓的方程,如不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com