【題目】在某年級的聯歡會上設計了一個摸獎游戲,在一個口袋中裝有3個紅球和7個白球,這些球除顏色外完全相同,一次從中摸出3個球.
(1)設表示摸出的紅球的個數,求
的分布列和數學期望;
(2)為了提高同學們參與游戲的積極性,參加游戲的同學每人可摸球兩次,每次摸球后放回,若規定兩次共摸出紅球的個數不少于,且中獎概率大于60%時,即中獎,求
的最大值.
科目:高中數學 來源: 題型:
【題目】設直線l的方程為,圓O的方程為
.
(1)當m取一切實數時,直線l與圓O都有公共點,求r的取值范圍;
(2)當時,直線
與圓O交于M,N兩點,若
,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司決定對旗下的某商品進行一次評估,該商品原來每件售價為25元,年銷售8萬件.
(1)據市場調查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了抓住2022年冬奧會契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術革新和銷售策略改革,并提高定價到元.公司擬投入
萬作為技改費用,投入50萬元作為固定宣傳費用,投入
萬元作為浮動宣傳費用.試問:當該商品改革后的銷售量
至少達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓:
的離心率為
,過左焦點
且斜率為
的直線交橢圓
于
兩點,線段
的中點為
,直線
:
交橢圓
于
兩點.
(1)求橢圓的方程;
(2)求證:點在直線
上;
(3)是否存在實數,使得
?若存在,求出
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】斜率為k的直線l經過拋物線y=x2的焦點F,且與拋物線相交于A,B兩點,若線段|AB|的長為8.
(1)求拋物線的焦點F的坐標和準線方程;
(2)求直線的斜率k.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
.若曲線
在點
處的切線方程為
(
為自然對數的底數).
(1)求函數的單調區間;
(2)若關于的不等式
在(0,+
)上恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】屠呦呦,第一位獲得諾貝爾科學獎項的中國本土科學家,在2015年獲得諾貝爾生理學或醫學獎,理由是她發現了青蒿素.這種藥品可以有效降低瘧疾患者的死亡率,從青篙中提取的青篙素抗瘧性超強,幾乎達到100%.據監測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.
(Ⅰ)寫出服藥一次后y與t之間的函數關系式;
(Ⅱ)據進一步測定:每毫升血液中含藥量不少于微克時,治療有效,求服藥一次后治療有效的時間是多長?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,平行于
軸且過點
的入射光線
被直線
反射,反射光線
交
軸于
點,圓
過點
,且與
、
相切.
(Ⅰ)求所在直線的方程;
(Ⅱ)求圓的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com