日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】如圖, 為圓柱的母線, 是底面圓的直徑, 的中點.

(Ⅰ)問: 上是否存在點使得平面?請說明理由;

(Ⅱ)在(Ⅰ)的條件下,若平面,假設這個圓柱是一個大容器,有條體積可以忽略不計的小魚能在容器的任意地方游弋,如果小魚游到四棱錐外會有被捕的危險,求小魚被捕的概率.

【答案】(1)詳見解析(2)

【解析】試題分析:可先猜測E的中點,再證明,由題意推導出四邊形AOED是平行四邊形,由此能證明DE∥平面ABC

Ⅱ)魚被捕的概率等于1減去四棱錐C-ABB1A1與圓柱OO1的體積比,由此求出四棱錐C-ABB1A1與圓柱OO1的體積,即可得出結果.

試題解析:

(Ⅰ)存在,E的中點.

證明:如圖

連接分別為的中點,

,且

四邊形是平行四邊形,

平面平面

平面.

魚被捕的概率

平面,且由(Ⅰ)知,∴平面

中點,,因是底面圓的直徑,得,且

平面,即為四棱錐的高.

設圓柱高為,底面半徑為,則

,即

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為F,直線x軸的交點為P,與拋物線的交點為Q,且.

(1)求拋物線的方程;

(2)過F的直線l與拋物線相交于A,D兩點,與圓相交于B,C兩點(A,B兩點相鄰),過A,D兩點分別作拋物線的切線,兩條切線相交于點M,求△ABM與△CDM的面積之積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的五面體中, ,四邊形為正方形,平面平面

(1)證明:在線段上存在一點,使得平面

(2)求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在[1,+∞)上的函數f(x)滿足:①f(2x)=2f(x);②當2≤x≤4時,f(x)=1-|x-3|.則函數g(x)=f(x)-2在區間[1,28]上的零點個數為________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1),求函數的單調遞增區間;

(2)在區間內至少存在一個實數,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓的下頂點為,點是橢圓上異于點的動點,直線分別與軸交于點,且點是線段的中點.當點運動到點處時,點的坐標為

(1)求橢圓的標準方程;

(2)設直線軸于點,當點均在軸右側,且時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】共享單車因綠色、環保、健康的出行方式,在國內得到迅速推廣.最近,某機構在某地區隨機采訪了10名男士和10名女士,結果男士、女士中分別有7人、6人表示“經常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.

1從這些男士和女士中各抽取一人,求至少有一人“經常騎共享單車出行”的概率;

2從這些男士中抽取一人,女士中抽取兩人,記這三人中“經常騎共享單車出行”的人數為,求的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正四棱錐的各條棱長都相等,且點分別是的中點.

1求證:

(2)在上是否存在點,使平面平面,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,函數.

(1)若函數上為減函數,求實數的取值范圍;

(2)令,已知函數,若對任意,總存在 ,使得成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: av 一区二区三区 | 日韩影院一区 | 成人高清在线 | 国产一级做a爰片在线看免费 | 一区二区久久久 | 国产日韩一区二区 | 日韩成人免费 | 日本激情网 | 91精品久久久久久综合五月天 | 亚洲精品无| 亚洲黄色毛片 | 黄色在线免费看 | 国产中文一区二区三区 | 日韩一二三区在线观看 | 国产精品色 | 激情视频网站 | 国产精品久久久久久久久久免费 | 伊人艹| 2018国产大陆天天弄 | 啪啪免费小视频 | 久久人 | 在线观看免费av电影 | 精品综合 | 国产一区二区视频在线观看 | 一区二区三区精品 | 日本在线视频一区二区三区 | 亚洲大片69999 | 99精品欧美一区二区三区 | 在线免费观看黄色 | 一区二区久久 | 一区中文字幕 | 丰满少妇理论片 | 国产精品久久久99 | 欧美视频三区 | 国产成人精品久久久 | 亚洲久草 | 成人精品视频在线观看 | 骚鸭av| 中文欧美日韩 | 国产欧美综合一区二区三区 | 精品免费一区 |