【題目】已知函數
(1)當時,求函數
的單調遞增區間;
(2)在區間內至少存在一個實數
,使得
成立,求實數
的取值范圍.
【答案】(1)單調遞增區間是和
;(2)
.
【解析】試題分析:(1)先確定函數,然后對函數進行求導,利用導數的正負建立不等式,求得函數的單調性與單調區間;(2)先對函數進行求導,然后通過分類討論,確定函數的單調性,求得函數的最小值,利用最小值小于0,建立不等式,求解不等式,得到實數的取值范圍.
試題解析:(1)當時,
,由
,得
或
,
所以函數在
與
上為增函數,
即函數的單調遞增區間是
和
.
(2) ,
當,即
時,
在[1,2]恒成立,
在[1,2]上為增函數,故
,
所以,這與
矛盾.
當,即
時,若
,則
;
若,則
所以當
時,
取得最小值,
因此,即
,可得
,
這與矛盾.
當,即
時,
在[1,2]恒成立,
在[1,2]上為減函數,
所以,
所以,解得
,滿足
.
綜上所述,實數的取值范圍為
科目:高中數學 來源: 題型:
【題目】平面α外有兩條直線m和n,如果m和n在平面α內的投影分別是m1和n1,給出下列四個命題:①m1⊥n1m⊥n;②m⊥nm1⊥n1;③m1與n1相交m與n相交或重合;④m1與n1平行m與n平行或重合.其中不正確的命題個數是( )
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AC是圓O的直徑,點B在圓O上,∠BAC=30°,BM⊥AC于點M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(1)證明:EM⊥BF;
(2)求平面BEF與平面ABC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于集合,定義了一種運算“
”,使得集合
中的元素間滿足條件:如果存在元素
,使得對任意
,都有
,則稱元素
是集合
對運算“
”的單位元素.例如:
,運算“
”為普通乘法;存在
,使得對任意
,都有
,所以元素
是集合
對普通乘法的單位元素.
下面給出三個集合及相應的運算“”:
①,運算“
”為普通減法;
②{
表示
階矩陣,
},運算“
”為矩陣加法;
③(其中
是任意非空集合),運算“
”為求兩個集合的交集.
其中對運算“”有單位元素的集合序號為( )
A. ①②; B. ①③; C. ①②③; D. ②③.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖, 為圓柱
的母線,
是底面圓
的直徑,
是
的中點.
(Ⅰ)問: 上是否存在點
使得
平面
?請說明理由;
(Ⅱ)在(Ⅰ)的條件下,若平面
,假設這個圓柱是一個大容器,有條體積可以忽略不計的小魚能在容器的任意地方游弋,如果小魚游到四棱錐
外會有被捕的危險,求小魚被捕的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,
(
).
(1)當時,若函數
與
的圖象在
處有相同的切線,求
的值;
(2)當時,若對任意
和任意
,總存在不相等的正實數
,使得
,求
的最小值;
(3)當時,設函數
與
的圖象交于
兩點.求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點.
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點,求三棱錐AEBC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解用戶對其產品的滿意度,從A、B兩地區分別隨機調查了20個用戶,得到用戶對產品的滿意度評分如下:
A地區: | 62 | 73 | 81 | 92 | 95 | 85 | 74 | 64 | 53 | 76 |
78 | 86 | 95 | 66 | 97 | 78 | 88 | 82 | 76 | 89 | |
B地區: | 73 | 83 | 62 | 51 | 91 | 46 | 53 | 73 | 64 | 82 |
93 | 48 | 95 | 81 | 74 | 56 | 54 | 76 | 65 | 79 |
(Ⅰ)根據兩組數據完成兩地區用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區滿意度的平均值及分散程度(不要求算出具體值,給出結論即可):
(Ⅱ)根據用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
記事件C:“A地區用戶的滿意度等級高于B地區用戶的滿意度等級”,假設兩地區用戶的評價結果相互獨立,根據所給數據,以事件發生的頻率作為相應事件發生的概率,求C的概率。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com