【題目】某專營店經銷某商品,當售價不高于10元時,每天能銷售100件,當價格高于10元時,每提高1元,銷量減少3件,若該專營店每日費用支出為500元,用x表示該商品定價,y表示該專營店一天的凈收入(除去每日的費用支出后的收入).
(1)把y表示成x的函數;
(2)試確定該商品定價為多少元時,一天的凈收入最高?并求出凈收入的最大值.
【答案】(1)見解析(2)定價為22元時,最大值908元.
【解析】
(1)根據條件建立分段函數關系即可;
(2)結合一元二次函數的最值性質即可求出函數的最值.
(1)當0≤x≤10,y=100x﹣500,
當x>10,銷量為100﹣3(x﹣10)=﹣3x+130,此時y=(﹣3x+130)x﹣500=﹣3x2+130x﹣500,
故y.
(2)當0≤x≤10,y=100x﹣500≤500,
當x>10,y=﹣3x2+130x﹣500=﹣3(x)2+
(
)2﹣500,
∵x∈N,
∴當x=22時,函數取得最大值,此時y=﹣3×222+130×22﹣500=908,
綜上當商品定價為22元時,一天的凈收入最高,凈收入的最大值為908.
科目:高中數學 來源: 題型:
【題目】有下列四個命題:
①已知-1<a<b<0,則0.3a>a2>ab;
②若正實數a、b滿足a+b=1,則ab有最大值;
③若正實數a、b滿足a+b=1,則有最大值
;
④x,y∈(0,+∞),x3+y3>x2y+xy2.
其中真命題的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x+log2x+b在區間( ,4)上有零點,則實數b的取值范圍是( )
A.(﹣10,0)
B.(﹣8,1)
C.(0,10)
D.(1,12)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知公比小于1的等比數列{an}的前n項和為Sn , a1= 且13a2=3S3(n∈N*).
(1)求數列{an}的通項公式;
(2)設bn=nan , 求數列{bn}的前項n和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數對一切實數
都有
成立,且
.
(1)求的值;
(2)求的解析式;
(3)已知,設
:當
時,不等式
恒成立;Q:當
時,
是單調函數。如果滿足
成立的
的集合記為
,滿足Q成立的
的集合記為
,求A∩(CRB)(
為全集).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖, 為坐標原點,橢圓
的左右焦點分別為
,離心率為
;雙曲線
的左右焦點分別為
,離心率為
,已知
,且
.
(1)求的方程;
(2)過點作
的不垂直于
軸的弦
,
為
的中點,當直線
與
交于
兩點時,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩個班級共有105名學生,某次數學考試按照“大于等于85分為優秀,85分以下為非優秀”的原則統計成績后,得到如下列聯表。
優秀 | 非優秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
總計 | 105 |
已知從甲、乙兩個班級中隨機抽取1名學生,其成績為優秀的概率為.
(1)請完成上面的列聯表;
(2)能否有把握認為成績與班級有關系?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】響應“文化強國建設”號召,某市把社區圖書閱覽室建設增列為重要的民生工程.為了解市民閱讀需求,隨機抽取市民200人做調查,統計顯示,男士喜歡閱讀古典文學的有64人,不喜歡的有56人;女士喜歡閱讀古典文學的有36人,不喜歡的有44人.
(1)能否在犯錯誤的概率不超過0.25的前提下認為喜歡閱讀古典文學與性別有關系?
(2)為引導市民積極參與閱讀,有關部門牽頭舉辦市讀書交流會,從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學.現從這9名代表中任選3名男代表和2名女代表參加交流會,記為參加交流會的5人中喜歡古典文學的人數,求
的分布列及數學期望
.
附:,其中
.
參考數據:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(附加題,本小題滿分10分,該題計入總分)
已知函數,若在區間
內有且僅有一個
,使得
成立,則稱函數
具有性質
.
(1)若,判斷
是否具有性質
,說明理由;
(2)若函數具有性質
,試求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com