(本題滿分10分)
若直線過點(0,3)且與拋物線y2=2x只有一個公共點,求該直線方程.
x=0或y=3或。
解析試題分析:直線與拋物線有一個公共點分兩種情況,一是與對稱軸平行,另一種情況是直線與拋物線相切,直線與拋物線相切時,把它們的方程聯立消去y后得到關于x的一元二次方程利用判別式等于零,求出斜率的值.
若直線l的斜率不存在,則直線l的方程為x=0,滿足條件…………2分;
當直線l的斜率存在,不妨設l:y=kx+3,代入y2 =2x,得:k2x2 +(6k-2)x+9=0……4分;
有條件知,當k=0時,即:直線y=3與拋物線有一個交點……………6分;
當k≠0時,由△=(6k-2)2 -4×9×k2=0,解得:k=,則直線方程為
……9分;
故滿足條件的直線方程為:x=0或y=3或…………………10分.
考點:直線與拋物線的位置關系.
點評:直線與拋物線有一個公共點有兩種情況,一是與對稱軸平行,另一種情況是直線與拋物線相切,我們在求解時容易忽略與對稱軸平行這種情況.
科目:高中數學 來源: 題型:解答題
(本題滿分12分)給定橢圓:
,稱圓心在原點
,半徑為
的圓是橢圓
的“準圓”。若橢圓
的一個焦點為
,其短軸上的一個端點到
的距離為
.
(Ⅰ)求橢圓的方程和其“準圓”方程.
(Ⅱ)點是橢圓
的“準圓”上的一個動點,過動點
作直線
使得
與橢圓
都只有一個交點,且
分別交其“準圓”于點
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經過點
,又知直線
與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數k值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知橢圓的對稱軸為坐標軸,焦點在
軸上,離心率
,
分別為橢圓的上頂點和右頂點,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓
相交于
兩點,且
(其中
為坐標原點),求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題10分)已知,動點
滿足
,設動點
的軌跡是曲線
,直線
:
與曲線
交于
兩點.(1)求曲線
的方程;
(2)若,求實數
的值;
(3)過點作直線
與
垂直,且直線
與曲線
交于
兩點,求四邊形
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com